Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Control of high-modulus titanium alloy phase composition, structure and complex of properties using thermohydrogen processing methods

https://doi.org/10.17073/0021-3438-2018-1-53-63

Abstract

This paper considers the possibility and efficiency of thermohydrogen processing of the high-modulus Ti–8,7Al–1,5Zr–2,0Mo titanium alloy with aluminum content exceeding its solubility limit in α-titanium. Experimental data on the effect of hydrogen on the alloy phase composition and structure are obtained. Regularities of phase transformations in the hydrogen-containing alloy are analyzed under different thermal effects. An alloy–hydrogen system is diagramed in the hydrogen concentration range from the initial content up to 1,0 wt.% and temperature range from 20 up to 1100 °C. It is shown that a β single-phase structure forms in the alloy via quenching from the temperatures of β range at a hydrogen content of 0,6 wt.% or more. Hydrogen saturation up to 0,8–1,0 wt.% causes β → δ hydride shear transformation during quenching from the temperatures below 750 °C and results in partial eutectoidal β phase transformation at slow cooling. It is stated that hydrogen extends the region of β phase stability by decreasing the temperature of β / (α + β) transition by 210 °C (at 1,0 wt.% of hydrogen) and increases the temperature of α2 phase stability by 50 °C. Technological schemes and modes of thermohydrogen processing are developed and tested using the alloy specimens in order to form the two types of structure – submicrocrystalline and bimodal, and formation mechanisms of these structures under thermohydrogen processing are analyzed as well. Mechanical properties of the alloy specimens are determined. It is stated that thermohydrogen processing results in growth of strength and hardness as compared with the initial state. The thermohydrogen processing forming submicrocrystalline structure leads to decrease of plasticity characteristics at maximum hardness.

About the Authors

A. M. Mamonov
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation

Dr. Sci. (Tech.), prof., Department of material science and materials processing technology

(121552, Russia, Moscow, Orshanskaya str., 3)



S. S. Slezov
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation

postgraduate student of Department of material science and materials processing technology

(121552, Russia, Moscow, Orshanskaya str., 3)



O. N. Gvozdeva
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of material science and materials processing technology

(121552, Russia, Moscow, Orshanskaya str., 3)



References

1. Pol’kin I.S., Kolachev B.A., Il’in A.A. Alyuminidy titana i splavy na ikh osnove [Aluminides of titanium and alloys on their basis]. Tekhnologiya legkikh splavov. 1997. No. 3. P. 32—39.

2. Nochovnaya N.A., Ivanov V.I. Intermetallidy na osnove titana. Analiz sostoyaniya voprosa [Intermetallic compounds based on titanium. Analysis of the state of the question]. Titan. 2007. No. 1. P. 44—48.

3. Lutjering G., Proske G., Terlinde G. Influence of microstracture, texture and environment on tensile properties of super alpha 2. In: Titanium-95. Science and Technology: Proc. 8th World conf. on titanium (Birmingham, UK, 22—26 Oct. 1995). Institute of Materials, 1996. Vol. l. P. 332—339.

4. Egry I., Brooks R., Holland-Mozitz D., Novakovic R., Matsushita T., Ricci E., Seetharaman S., Wunderlich R. Temperophysical propertis of titanium aluminides. In: Ti-2007. Science and Technology: Proc. 11th World conf. on titanium (Kyoto, Japan, 3—7 June 2007). The Japan Institute of Metals, 2007. Vol. 1. P. 671—674.

5. Roth-Fagaraseanu D., Appel F. TiAl — new opportunity in the aerospace industry. In: Ti-2003. Science and Technology: Proc. 10th World conf. on titanium (Hamburg, Germany, 13—18 July 2003). WILEY-VCH Verlag GmbH & Co. KGaA, 2003. Vol. 5. P. 2899—2907.

6. Hervier Z., Belaygue P., Alexis J., Petit J.-A., Uginet J.-F. Titanium alloys for high temperature applications. In: Ti-2007. Science and Technology: Proc. 11th World conf. on titanium (Kyoto, Japan, 3—7 June 2007). The Japan Institute of Metals, 2007. Vol. 2. P. 1349—1353.

7. Heritier P. Titanium for high strength aerospace forgings. In: Ti-2007. Science and Technology: Proc. 11ht World conf. on titanium (Kyoto, Japan, 3—7 June 2007). The Japan Institute of Metals, 2007. Vol. 2. P. 1313—1317.

8. Wang Bin, Jia Tiancong, Zou Dunxue. A study on longterm stability of Ti3Al-Nb-V-Mo alloy. Mater. Sci. Eng. A. 1992. Vol. 153. No. 1-2. P. 422—426.

9. Froes F.H., Suryanarayana C., Eliezer D. Production, characteristics and commercialization of titanium aluminides. ISIJ Intern. 1991. Vol. 31. No. 10. P. 1235—1247.

10. Il’in A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaya tekhnologiya titanovykh splavov [Hydrogen technology of titanium alloys]. Moscow: MISIS, 2002.

11. Senkov O.N., Jonas J.J. Solute softening of alpha titanium — hydrogen alloys. In: Advances in the science and technology of titanium alloy processing: Proc. Int. symp. (Anaheim, California, 5—8 Febr. 1996). TMS, 1996. P. 109-116.

12. Ilyin A.A., Polkin I.S., Mamonov A.M., Nosov V.K. Thermohydrogen treatment — base of hydrogen treatment of titanium alloys. In: Titanium-95. Science and Technology: Proc. 8th World conf. on titanium (Birmingham, UK, 22—26 Oct. 1995). P. 2462—2469.

13. Ilyin A.A., Mamonov A.M., Kusakina Y.N. Thermohydrogen treatment of shape casted titanium alloys. In: Advances in the science and technology of titanium processing: Proc. Int. symp. (Anaheim, California, 10—12 Oct. 1997). TMS. P. 639—646.

14. Apgar L.S., Yolton C.I., Sagib M. Microstructure and property modification of vCast alpha-2 titanium alloys by thermochemical processing with hydrogen. In: Titanium-92. Science and Technology: Proc. 7th World titanium conf. (San-Diego, California. 29 June—2 July 1992). Warrendale, Pa.: Minerals, Metals and Materials Society, 1993. Vol. 2. P. 1331—1335.

15. Niinomi M. Titanium alloys for biomedical, dental and healthcare Applications. In: Ti-2007. Science and Technology: Proc. 11th World conf. on titanium (Kyoto, Japan, 3—7 June 2007). The Japan Institute of Metals, 2007. Vol. 2. P. 1417—1425.

16. Tahara M., Kim H.Y., Inamura T., Hosoda H., Miyazaki S. Effect of addition on mechanical properties of Ti—20Nb—4Zr—2Ta (at%) biomedical superelastic alloy. In: Ti-2007. Science and Technology: Proc. 11th World conf. on titanium (Kyoto, Japan, 3—7 June 2007). The Japan Institute of Metals, 2007. Vol. 2. P. 1453—1454.

17. Jelliti Sami, Richrd Caroline, Retraint Delphine, Demangel Clemence, Landoulsi Jessem. Surface modification of low-modulus Ti35NbXZr alloys with nanotube arrays. In: Ti-2011: Proc. 12th World conf. on titanium (Beijing, China, 19—24 June 2011). The Japan Institute of Metals, 2011. Vol. 3. P. 2042—2046.

18. Dongyan Ding, Hegang Liu, Congqin Ning, Zhaohui Li. Development of biomedical Ti—Cr alloys with changeable young’s modulus via deformation-induced transformation. In: Ti-2011: Proc. 12th World conf. on titanium (Beijing, China, 19—24 June 2011). The Japan Institute of Metals, 2011. Vol. 3. P. 2046—2050.

19. Mi Gong, Minjie Lai, Bin Tang, Hongchao Kou, Jinshan Li, Lian Zhou Young’s modulus of Ti—Cr—Sn—Zr alloys with meta-stable beta phase. In: Ti-2011. Proc. 12th World conf. on titanium (Beijing, China, 19—24 June 2011). The Japan Institute of Metals, 2011. Vol. 3. P. 2180—2184.

20. Collings E.W. The physical metallurgy of titanium alloys. ASM International (OH), 1984.

21. Mamonov A.M. Skvortsova S.V., Spektor V.S. Printsipy postroeniya kompleksnykh tekhnologicheskikh protsessov proizvodstva implantatov iz titanovykh splavov, vklyuchayushchikh vakuumnye ionno-plazmennye nanotekhnologii [Principles of construction of complex technological processes for the production of implants made of titanium alloys including vacuum ion-plasma nanotechnologies]. Titan. 2012. No. 3. P. 45—50.

22. Itoh Y., Itoh A., Azuma H., Hioki T. Improving the tribological properties of Ti—6Al—4V alloy by nitrogen-ion implantation. Surf. Coat. Technol. 1999. Vol. 111. P. 172—176.

23. Belov S.P., Il’in A.A., Mamonov A.M., Aleksandrova A.V. Teoreticheskii analiz protsessov uporyadocheniya v splave na osnove Ti3Al. Vliyanie vodoroda na ustoichivost’ intermetallida Ti3Al [Theoretical analysis of ordering processes in an alloy based on Ti3Al. The influence of hydrogen on stability of Ti3Al intermetallic compound]. Metally (RAN). 1994. No. 2. P. 76—80.

24. Kolachev B.A., Elagin V.I., Livanov V.A. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov [Metallurgy and thermal processing of non-ferrous metals and alloys]. Moscow: MISIS, 2005.

25. Il’in A.A. Mekhanizm i kinetika fazovykh i strukturnykh prevrashchenii v titanovykh splavakh [The mechanism and kinetics of phase and structural transformations in titanium alloys]. Moscow: Nauka, 1994.

26. Mamonov A.M., Kusakina Yu.N., Il’in A.A. Zakonomernosti formirovaniya fazovogo sostava i struktury v zharoprochnom titanovom splave s intermetallidnym uprochneniem pri legirovanii vodorodom [Regularities of phase composition and structure formation in heat-resistant titanium alloy with intermetallic hardening at hydrogen alloying]. Metally (RAN). 1999. No. 3. P. 84—87.

27. Mamonov A.M., Skvortsova S.V., Agarkova E.O., Umarova O.Z. Fiziko-khimicheskie i tekhnologicheskie osnovy formirovaniya termostabil’nykh struktur bimodal’nogo tipa v zharoprochnykh titanovykh splavakh i splavakh na osnove alyuminida titana pri obratimom legirovanii vodorodom [Physicochemical and technological principles of thermo-stable bimodal structure type formation in heat-resistant titanium alloys and titanium aluminide based alloys at reversible hydrogen alloying]. Titan. 2013. No. 3. P. 9—16.


Review

For citations:


Mamonov A.M., Slezov S.S., Gvozdeva O.N. Control of high-modulus titanium alloy phase composition, structure and complex of properties using thermohydrogen processing methods. Izvestiya. Non-Ferrous Metallurgy. 2018;(1):53-63. (In Russ.) https://doi.org/10.17073/0021-3438-2018-1-53-63

Views: 688


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)