Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Rheological properties of EP742-ID alloy in the context of Integrated Computational Materials Engineering (ICME). Part 2. Modeling the compression process for samples and virtual workpieces

https://doi.org/10.17073/0021-3438-2018-1-43-52

Abstract

The second part of this paper compares modeling and experimental results with the Huber–Mises plasticity theory during the axisymmetric settlement of EP742-ID alloy samples with various ratios of initial d0/h0 sizes. The influence of initial sizes on the strain-stress state of model experimental samples and virtual workpieces is estimated. Settlement modeling results are given for ∅15 mm cylindrical samples and ∅300 mm workpieces made of EP742-ID heat-resistant nickel alloy with various ratios of initial similar sizes with the substantiation of choosing average stress and equivalent deformation as internal factors that determine microstructure formation. It is shown that compression axial tension component values in the center of samples under initial plastic deformation of 0,2 % are increased by more than 1,5 times with the higher d0/h0 ratio. Experimental and calculated values of offset yield strength, axial and radial stresses are obtained at a compression temperature of 1050 °C depending on d0/h0. The paper reviews the influence of the degree of deformation and the ratio of initial sizes on the distribution of average stress and equivalent deformation along the radius of the mid-height of meridian sections of the ∅15 mm settled (experimental) samples and ∅300 mm virtual workpieces. The paper describes general microstructure forecasting principles for applications that use process modeling software packages when developing settlement modes for disk workpieces made of heat-resistant nickel alloys. Special attention is paid to the fact that modeling methods must be theoretically proved and experimentally confirmed.

About the Authors

V. K. Nosov
Moscow Aviation Institute (National Research University) (MAI (NRU)), Stupino branch
Russian Federation

Dr. Sci. (Tech.), prof., Department of technology and automation of material handling

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)



S. A. Kononov
JSC «Metallurgical plant “Electrostal”»
Russian Federation

Cand. Sci. (Tech.), deputy managing director

(142800, Russia, Moscow region, Elektrostal, Zheleznodorozhnaya str., 1)



A. S. Perevozov
JSC «SMK»
Russian Federation

technical director

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 2)



P. A. Nesterov
Moscow Aviation Institute (National Research University) (MAI (NRU)), Stupino branch
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of technology and automation of material handling

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)



Yu. Yu. Shchugorev
Moscow Aviation Institute (National Research University) (MAI (NRU)), Stupino branch
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of technology and automation of material handling

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)



Yu. A. Gladkov
LTD «Quantifier Forms»
Russian Federation

Cand. Sci. (Tech.), associate prof., head of sales and support

(115088, Russia, Moscow, 2-nd Yuzhnoportovyi proezd, 16, build. 2)



References

1. Bolcavage A., Brown P.D., Cedoz R., Cooper N., Deatok C., Hartman D.R., Keskin A., Matlik J.F., Modgil G., Stillinger J.D. Integrated computational materials engineering from a gas turbine engine perspective. Integr. Mater. Manuf. Innov. 2014. Vol. 3. Iss. 1. Art. 13.

2. Panchal J.H., Kalidindi S.R., McDonell D.L. Key computational modeling in integrated computational materials engineering. Comp.-Aided Design. 2013. Vol. 45. P. 4—25.

3. Allison J., Backman D., Christodoulou L. Integrated computational materials engineering: A new paradigm for the global materials profession. JOM. 2006. Vol. 58. Iss. 11. P. 25—27.

4. Allison J. Integrated computational materials engineering: A perspective on progress and future steps. JOM. 2011. Vol. 63. Iss. 4. P. 15—18.

5. Horstemeyer M.F. Integrated computational materials engineering (ICME) for metals. Warrendale: The Minerals, Metals & Materials Society; Hoboken: John Wiley & Sons, 2012.

6. Schmitz G.J., Prahl U. Introduction, in integrative computational materials engineering: Concepts and applications of a modular simulation platform. Weinheim, Germany: Wiley-VCH Verlag GmbH and Co. KGaA, 2012.

7. QForm — Quantor Form. URL: http://www.qform3d.ru/products (accessed: 01.02.2017).

8. Cowles B.A., Backman D.G., Dutton R.E. Verification and validation of ICME methods and models for aerospace applications. Integr. Mater. Manuf. Innov. 2012. Vol. 1. Iss.1. Art.2.

9. Cowles B.A., Backman D.G., Dutton R.E. Update to recommended best practice for verification and validation of ICME methods and models for aerospace applications. Integr. Mater. Manuf. Innov. 2015. Vol. 4. Iss. 1. Art. 2.

10. The American Society of Mechanical Engineers: Guide for verification and validation in computational solid mechanics. ASME, V&V, 10-2006.

11. Nosov V.K., Kononov S.A., Perevozov A.S., Nesterov P.A., Shchugorev Yu.Yu., Gladkov Yu.A. Reologicheskie svoistva splava EP742-ID v kontekste integrirovannogo vychislitel’nogo materialovedeniya i inzhiniringa (ICME). Chast’ I. Rezul’taty eksperimental’nykh issledovanii [Rheological properties of alloy EP742-ID in the context of Integrated Computing Materials Science and Engineering (ICME). Part 1. Results of experimental research]. Izvestiya vuzov. Tsvetnaya matallurgiya. 2018. No. 1. P. 30—42.

12. Smirnov-Alyaev G.A. Soprotivlenie materialov plasticheskomu deformirovaniyu [The resistance of materials to plastic deformation]. Leningrad: Mashinostroenie, 1978.

13. Storozhev M.V., Popov E.A. Teoriya obrabotki metallov davleniem [The theory of processing of metals pressure]. Mosсow: Mashinostroenie, 1977.

14. Maslenkov S.B., Kabanov I.V., Maslenkova E.A., Abramov O.V., Mel’kumov I.N. Vliyanie temperatury i skorosti deformirovaniya na plastichnost’ splava KhN62BMKTYu [Influence of temperature and speed of deformation on plasticity of KhN62BMKTYu alloy]. Metallovedenie i termicheskaya obrabotka metallov. 1999. Vol. 10. P. 21—23.

15. Logunov A.V., Shmotin Yu.N. Sovremennye zharoprochnye nikelevye splavy dlya diskov gazovykh turbin (materialy i tekhnologii) [Modern heat-resistant Nickel right disks for gas turbines (materials and technology)]. Mosсow: Nauka i tekhnologii, 2013.

16. Okhrimenko Ya.M., Tyurin V.A. Teoriya protsessov kovki [Theory of forging processes]. Mosсow: Vysshaya shkola, 1977.

17. Byakov L.I., Vladimirov S.A., Shadskii A.A. Issledovanie neravnomernosti plasticheskoi deformatsii pri osadke v oblasti malykh stepenei deformatsii [Research of unevenness of plastic deformation at draft in the field of small extents of deformation]. Tekhnologiya legkikh splavov. 1982. Vol. 1. P. 25—29.

18. Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivlenie plasticheskoi deformatsii metallov i splavov: Spravochnik [The resistance to plastic deformation of metals and alloys: Reference]. Mosсow: Metallurgiya, 1983.

19. Zolotorevskii V.S. Mekhanicheskie svoistva metallov [Mechanical properties of metals]. Mosсow: Metallurgiya, 1983.

20. Berdin V.K., Berdin N.V., Luk’yanov V.V. Uprugo-vyazkoplasticheskoe povedenie materiala v zadachakh chislennogo modelirovaniya odnoosnogo szhatiya, rastyazheniya i chistogo sdviga [Elastic and visco-plastic behavior of material in problems of numerical modeling of monoaxial compression, stretching and clean shift]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2015. Vol. 3. P. 33—42.

21. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Mosсow: MISIS, 2005.

22. Polukhin P.I., Gorelik S.S., Vorontsov V.K. Fizicheskie osnovy plasticheskoi deformatsii [The physical bases of plastic deformation]. Mosсow: Metallurgiya, 1982.

23. Meking Kh., Gotshtein G. Vozvrat i rekristallizatsiya v protsesse deformatsii. Rekristallizatsiya metallicheskikh materialov [The recovery and recrystallization during deformation. Recrystallization of metallic materials]. Mosсow: Metallurgiya, 1982.

24. Subramanian K., Cherukuri H.P. Prediction of microstructure evolution during multi-stand shape rolling of nickelbase superalloys. Integr. Mater. Manuf. Innov. 2014. Vol. 3. Iss. 1. Art. 27.

25. Liu Y.X., Lin Y.C., Li H.B., Wen D.X., Chen X.M., Chen M.S. Study of dynamic recrystallization in Ni-based superalloy by experiments and cellular automation model. Mater. Sci. Eng. 2015. Vol. 626. P. 432—440.

26. Mignanelli P.M., Jones N.G., Perkins K.M., Hardy M.C., Stone H.J. Microstructural evolution of a delta containing nickel-base superalloy during heat treatment and isothermal forging. Mater. Sci. Eng. 2014. Vol. 621. P. 265—271.

27. Bombac D., Fazaring M., Kugler G., Spajic S. Microstructure development of Nimonic 80A superalloy during hot deformation. Mater. Geoenvironment. 2008. Vol. 55. No. 3. P. 319—328.

28. Gabb T.P., Kantzos P.T., Palsa B., Telesman J., Gayda J., Sudbrack C. Fatigue failure modes of the grain size transition zone in a dual microstructure disk. In: Superalloys 2012: 12th Intern. symp. (Champion, Pennsylvania, USA, 9—13 Sept. 2012). Pittsburgh, PA: TMS, 2012. P. 63—72.

29. Mitchell R.J., Lemsky J.A., Ramanathan R., Li H.Y., Perkins K.M., Connor L.D. Process development & microstructure & mechanical property evaluation of a dual microstructure heat treated advanced nickel disc alloy. In: Superalloys 2008: 11th Intern. symp. (Champion, Pennsylvania, USA, 14—18 Sept. 2008). Pittsburgh, PA: TMS, 2008. P. 347—356.


Review

For citations:


Nosov V.K., Kononov S.A., Perevozov A.S., Nesterov P.A., Shchugorev Yu.Yu., Gladkov Yu.A. Rheological properties of EP742-ID alloy in the context of Integrated Computational Materials Engineering (ICME). Part 2. Modeling the compression process for samples and virtual workpieces. Izvestiya. Non-Ferrous Metallurgy. 2018;(1):43-52. (In Russ.) https://doi.org/10.17073/0021-3438-2018-1-43-52

Views: 539


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)