Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Rheological properties of EP742-ID alloy in the context of Integrated Computational Materials Engineering (ICME). Part 1. Results of experimental research

https://doi.org/10.17073/0021-3438-2018-1-30-42

Abstract

The article covers rheological properties of the EP742-ID alloy in high-temperature compression tests of cylindrical samples with different ratios of similar initial diameters and heights (d0 /h0). The results of experimental research in the temperature range t = 1000÷1150 °C and initial deformation rates ε · 0 = 3·10–2÷3·10–4 s–1 have shown that an increase in compression flow stress with the growth of the d0 /h0 ratio is observed at all temperatures and deformation rates with a linear dependence on the ε · 0 value and the d0 /h0 ratio. The method is proposed to recalculate deformation resistance indicators to the set ratio of similar sizes. Higher compression flow stress is connected with an increase in the coefficient of rigidity of samples and their specific contact surfaces. The dependence of apparent activation energy of alloy plastic deformation (Qdef), its relationship with the phase structure and conditions of the process of γ solid solution dynamic recrystallization is established. In the temperature conditions of the beginning of γ solid solution dynamic recrystallization process (1000–1050 °C) the Qdef value for d0 /h0 = 0,75 samples is 959 kJ/mol. The highest Qdef values for d0 /h0 =  0,75 samples of 1248 and 1790 kJ/mol are observed in the range of temperatures of intensive grain boundary γ ′-phase dissolution and coagulation (1050–1100 °C). Samples with d0 /h0 = 3,0 in this temperature range have Qdef up to 2277 kJ/mol. The apparent activation energy of plastic deformation decreases to 869 kJ/mol in the range of temperatures of homogeneous γ solid solution with grain-boundary primary and secondary carbides (1100–1150 °C). The paper provides the results of alloy sample compression at single and repeated consecutive loading with various times of pauses between deformations. It is shown that meta dynamic recrystallization under experimental conditions does not occur in the γ + γ ′-range, and occurs inertly in the γ-range.

About the Authors

V. K. Nosov
Moscow Aviation Institute (National Research University) (MAI (NRU)), Stupino branch
Russian Federation

Dr. Sci. (Tech.), prof., Department of technology and automation of material handling

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)



S. A. Kononov
JSC «Metallurgical plant “Electrostal”»
Russian Federation

Cand. Sci. (Tech.), deputy managing director

(142800, Russia, Moscow region, Elektrostal, Zheleznodorozhnaya str., 1)



A. S. Perevozov
JSC «SMK»
Russian Federation

technical director

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 2)



P. A. Nesterov
Moscow Aviation Institute (National Research University) (MAI (NRU)), Stupino branch
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of technology and automation of material handling

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)



Yu. Yu. Shchugorev
Moscow Aviation Institute (National Research University) (MAI (NRU)), Stupino branch
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of technology and automation of material handling

(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)



Yu. A. Gladkov
LTD «Quantifier Forms»
Russian Federation

Cand. Sci. (Tech.), associate prof., head of sales and support 

(115088, Russia, Moscow, 2-nd Yuzhnoportovyi proezd, 16, build. 2)



References

1. Integrated computational materials engineering: A transformational discipline for improved competitiveness and national security. 1st ed. Washington, DC: The National Academies Press, 2008.

2. Horstemeyer M.F. Integrated computational materials engineering (ICME) for metals. Warrendale: The Minerals, Metals and Materials Society; Hoboken: John Wiley and Sons, 2012.

3. Schmitz G.J., Prahl U. Introduction, in integrative computational materials engineering: Concepts and applications of a modular simulation platform. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., KGaA, 2012.

4. Arnold S.M., Holland F.A., Bednarcyk B.A., Pineda E.J. Combining material and model pedigree is foundational to making ICME a reality. Integr. Mater. Manuf. Innov. 2015. Vol. 4. P. 4—30.

5. Allison J. Integrated computational materials engineering: A perspective on progress and future steps. J. Metals. 2011. Vol. 63. No. 4. P. 15—18.

6. Materials genome initiative for global competitiveness. URL: https://www.whitehouse.gov/mgi (accessed: 01.02.2017).

7. Huber D., Stotter C., Sommitsch C., Mitsche S., Poelt P., Buchmayr B., Stockinger M. Microstructure modeling of the dynamic recrystallization kinetics during turbine disc forging of nickel superalloy Alloy 718PLusTM. In: Superalloys 2008: 11th Intern. symp. (Champion, Pennsylvania, USA, 14—18 Sept. 2008). Pittsburgh, PA: TMS, 2008. P. 855—861.

8. Kodzhaspirov G.E., Terentyev M.I. Modeling the dynamically recrystallized grain size evolution of a superalloy. Mater. Phys. Mech. 2012. Vol. 13. No. 1. P. 70—76.

9. Matsui T. Dynamic recrystallization behavior of Waspaloy during hot working. Mater. Trans. 2014. Vol. 55. No. 2. P. 255—263.

10. Chen F., Cui Z., Ou H., Long H. Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy. Appl. Phys. A: Mater. Sci. Process. 2016. Vol. 122. No. 10. P. 890—902.

11. Furrer D., Goetz R., Shen G. Modeling and simulation of Alloy 718: Microstructure and mechanical properties. In: Superalloy 718 & Derivatives: 7th Intern. symp. (Pittsburgh, Pennsylvania, USA, 10—13 Oct. 2010). Pittsburgh, PA: TMS, 2010. P. 663—677.

12. Sajjadi S.A., Nategh A.S. High temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111. Mater. Sci. Eng. 2001. Vol. 307. P. 158—164.

13. Kitashima T., Ping D.H., Wang J., Harada H. Phase-field modeling of γ’ precipitation in multi-component Ni-base superalloys. In: Superalloys 2008: 11th Intern. symp. (Champion, Pennsylvania, USA, 14—18 Sept. 2008). Pittsburgh, PA: TMS, 2008. P. 819—827.

14. Warnken N., Drevermann A., Ma D., Fries S.G., Steinbach I. Development of a simulation approach to microstructure evolution during solidification and homogenization using the phase field method. In: Superalloys 2008: 11th Intern. Symp. (Champion, Pennsylvania, USA, 14—18 Sept. 2008). Pittsburgh, PA: TMS, 2008. P. 951—962.

15. Chen L.Q. Phase-field method and Materials Genome Initiative (MGI). Mater. Sci. A. 2014. Vol. 59. No. 15. P. 1641—1645.

16. Li Z., Liu B., Xu Q. Microstructure simulation on recrystallization of an as-cast nickel based single crystal superalloy. Comput. Mater. Sci. 2015. Vol. 107. P. 122—133.

17. Azarbarmas M., Aghaie-Khafri, Cabrera J.M., Calvo J. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718. Mater. Sci. Eng. 2016. Vol. 678. P. 137—152.

18. DEFORM-3D — Scientific Forming Technologies Corporation. URL: http://www.deform.com/products/ (accessed: 01.02.2017).

19. QForm — Quantor Form. URL: http://www.qform3d.ru/products (accessed: 01.02.2017).

20. Polukhin P.I., Gorelik S.S., Vorontsov V.K. Fizicheskie osnovy plasticheskoi deformatsii [The physical bases of plastic deformation]. Mosсow: Metallurgiya, 1982.

21. Puar’e Zh.P. Vysokotemperaturnaya plastichnost’ tel [High-temperature plasticity of crystalline bodies]. Mosсow: Metallurgiya, 1982.

22. Frost G.Dzh., Eshbi M.F. Karty mekhanizmov deformatsii [Maps of deformation mechanisms]. Chelyabinsk: Metallurgiya, Chelyabinskoye otdelenie, 1989.

23. Smirnov-Alyaev G.A. Soprotivlenie materialov plasticheskomu deformirovaniyu [The resistance of materials to plastic deformation]. Leningrad: Mashinostroenie, 1978.

24. Storozhev M.V., Popov E.A. Teoriya obrabotki metallov davleniem [The theory of processing of metals pressure]. Mosсow: Mashinostroenie, 1977.

25. Okhrimenko Ya.M., Tyurin V.A. Teoriya protsessov kovki: Uchebnoe posobie dlya vuzov [Theory of forging processes: Textbook for universities]. Mosсow: Vysshaya shkola, 1977.

26. Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivlenie plasticheskoi deformatsii metallov i splavov: Spravochnik [The resistance to plastic deformation of metals and alloys: Reference]. Mosсow: Metallurgiya, 1983.

27. Berdin V.K., Berdin N.V., Luk’yanov V.V. Uprugo-vyazkoplasticheskoe povedenie materiala v zadachakh chislennogo modelirovaniya odnoosnogo szhatiya, rastyazheniya i chistogo sdviga. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2015. Vol. 3. P. 33—42.

28. Nosov V.K., Shchipunov G.I., Ovchinnikov A.V. Postroenie krivykh tekuchesti pri izotermicheskoi osadke tsilindricheskikh obraztsov. Zavodskaya laboratoriya. 1988. Vol. 54. No. 5. P. 82—85.

29. Khenzel’ A., Shpittel’ T. Raschet energosilovykh parametrov v protsessakh obrabotki metallov davleniem: Spravochnik [Calculation of the power parameters in the processes of treatment of metals pressure: Reference]. Mosсow: Metallurgiya, 1982.

30. Kharitonin S.V., Smirnov V.K., Bondin A.R. Soprotivlenie deformatsii uglerodistykh instrumental’nykh i drugikh legirovannykh stalei i splavov. Izv. vuzov. Chernaya metallurgiya. 1990. No. 2. P. 30—32.

31. Berdin V.K., Berdin N.V. Modelirovanie odnoosnogo szhatiya tsilindricheskikh obraztsov s razlichnoi iskhodnoi vysotoi. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2011. No. 3. P. 33—39.

32. Zhang P., Yi C., Chen G., Qin H., Wang C. Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy. Metals. 2016. Vol. 6. No. 7. P. 161—171.

33. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Mosсow: MISIS, 2005.

34. Petrushin N.V., Logunov A.V., Gorin V.A. Strukturnaya stabil’nost’ nikelevykh zharoprochnykh splavov pri vysokikh temperaturakh. Metallovedenie i termicheskaya obrabotka metallov. 1984. No. 5. P. 36—38.

35. Logunov A.V., Shmotin Yu.N. Sovremennye zharoprochnye nikelevye splavy dlya diskov gazovykh turbin (materialy i tekhnologii) [Modern heat-resistant Nickel right disks for gas turbines (materials and technology)]. Mosсow: Nauka i tekhnologii, 2013.

36. Kleshchev A.S., Vlasova O.N., Korneeva N.N., Ryazanova R.G. Issledovanie kinetiki sobiratel’noi rekristallizatsii dispersionno-tverdeyushchikh nikelevykh splavov. Tekhnologiya legkikh splavov. 1981. No. 6. P . 53—57.

37. Maslenkov S.B., Kabanov I.V., Maslenkova E.A., Abramov O.V., Mel’kumov I.N. Vliyanie temperatury i skorosti deformirovaniya na plastichnost’ splava KHN62BMKTYU. Metallovedenie i termicheskaya obrabotka metallov. 1999. No. 10. P. 21—23.

38. Monajati H., Jahazi M., Yue S., Taheri A.K. Deformation characteristics of isothermal forged UDIMET 720 nickelbase superalloy. Metall. Mater. Trans. A. 2005. Vol. 360. P. 895—905.

39. Sajjadi S.A., Chaichi A., Ezatpour H.R., Maghsoudlou A., Kalaie M.A. Hot deformation processing map and microstructural evaluation of the Ni-based superalloy Ni-738LC. J. Mater. Eng. Perform. 2016. Vol. 25. No. 4. P. 1269—1275.

40. Kashyap B.P., Chaturvedi M.C. Activation energy for superplastic deformation of in 718 superalloy. Scr. Mater. 2000. Vol. 43. P. 429—433.

41. Brown A.A., Bammann D.J. Validation of a model for static and dynamic recrystallization in metals. Int. J. Plast. 2012. Vol. 32—33. P. 17—35.

42. Gardner S., Li W., Coleman M., Johnston R. The effects of thermomechanical history on the microstructure of a nickel-base superalloy during forging. Mater. Sci. Eng. 2016. Vol. 668. P. 263—270.


Review

For citations:


Nosov V.K., Kononov S.A., Perevozov A.S., Nesterov P.A., Shchugorev Yu.Yu., Gladkov Yu.A. Rheological properties of EP742-ID alloy in the context of Integrated Computational Materials Engineering (ICME). Part 1. Results of experimental research. Izvestiya. Non-Ferrous Metallurgy. 2018;(1):30-42. (In Russ.) https://doi.org/10.17073/0021-3438-2018-1-30-42

Views: 950


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)