Forecasting of mechanical properties of VТ6 and VТ3-1 titanium alloys forgings depending on chemical composition and structure
https://doi.org/10.17073/0021-3438-2018-1-12-21
Abstract
The paper studies the statistical dependence of the mechanical properties of 218 forgings (15 types) made of VT3-1 and VT6 alloys in 2000–2014 on chemical composition (the content of alloying elements and admixtures, structural and strength equivalents of aluminum and molybdenum), structure types, subtypes and parameters after annealing, quenching and aging. It was found that the strength and plastic properties of one-type forgings vary quite widely. The share of variation of forging properties due to fluctuations in the content of main components and admixtures, as well as the influence of structure types and sizes of structural components was estimated.
Based on the correlation analysis it was revealed that the change of each alloying element or admixture content has a little or no effect on forging properties. This is caused by small increments of their change within the grade composition. However, their total content expressed in terms of aluminum and molybdenum equivalents can vary over a fairly wide range. It was statistically substantiated that the share of tensile strength variation of VT3-1 and VT6 forgings may be ~25÷65 % due to the influence of their chemical compositions (in terms of aluminum and molybdenum equivalents), and about 20 % due to only the influence of structure types and subtypes. When these two factors (composition + structure) are combined, the share of variation can reach ~50÷65 %. For plastic properties and impact toughness, this figure is less and ranges from 20 to 35 %. The mathematical models are offered to forecast the mechanical properties of forgings depending on the structure parameters and aluminum and molybdenum equivalents.
About the Authors
Yu. B. EgorovaRussian Federation
Dr. Sci. (Tech.), dean of the faculty, prof., Department «Modeling of systems and information technology»
(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)
L. V. Davydenko
Russian Federation
Cand. Sci. (Tech.), associate prof., Department «Materials science»
(107023, Russia, Moscow, Bol’shaya Semenovskaya str., 38)
S. B. Belova
Russian Federation
Cand. Sci. (Tech.), associate prof., Department «Modeling of systems and information technology»
(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)
E. V. Chibisova
Russian Federation
head of Department of scientific and technical information, senior lecturer, Department «Modeling of systems and information technology»
(142800, Russia, Moscow region, Stupino, Pristantsionnaya str., 4)
References
1. DEFORM™. URL: http://www.deform.com (accessed: 28.01.2017).
2. QFORM. URL: http://www.qform3d.ru (accessed: 28.01.2017).
3. ThermoCalc. URL: www.thermocalc.com (accessed: 28.01.2017).
4. JMatPro. URL: www.sentesoftware.co.uk (accessed: 28.01.2017).
5. Saunders N., Guo Z., Li X., Miodownik A.P., Schillé J.-Ph. Using JMatPro to model materials properties and behavior. JOM. 2003. Dec. P. 60—65.
6. Gabidullin A.E., Ovchinnikov A.V., Alpatov V.P., Chernoglasova Т.А. Prediction of the structural state and properties of pressed aluminum semifinished products with the use of a QFORM CAD system. Russ. J. Non-Ferr. Metals. 2009. Vol. 50. No. 3. P. 242—245.
7. Panchal J.H., Kalidindi S.R., McDonell D.L. Key computational modeling issues in integrated computational materials engineering. Comput. Aided Dis. 2013. Vol. 45. P. 4—25.
8. Salem A.A., Shaffer J.B., Sadko D.P., Semiatin S.L., Kalidindi S.R. Workflow for integrating mesoscale heterogeneities in materials structure with process simulation of titanium alloys. Integr. Mater. Manuf. Innov. 2014. URL: http://link.springer.com/article/10.1186/s40192-014-0024-6 (accessed: 28.01.2017).
9. Arnold S.M., Holland F.A., Bednarcyk B.A., Peneda E.J. Combining material and model pedigree is foundational to making ICME a reality. Integr. Mater. Manuf. Innov. 2015. URL: http://link.springer.com/article/10.1186/s40192-015-0031-2 (дата обращения 28.01.2017).
10. Saunders N. An integrated approach to the calculation of materials properties for Ti-alloys. In: Titanium-2003. Science and Technology: Proc. 10th World conf. on titanium (Hamburg, Germany, 13—8 July 2003). 2003. Vol. 1—5. P. 3027—3032.
11. Collins P.C., Connors S., Banerjee R., Fraser H.L. A combinatorial approach to the development of neural networks for the prediction of composition-microstructure-property relationships in α/β Ti alloys. In: Titanium-2003. Science and Technology: Proc. 10th World conf. on titanium (Hamburg, Germany, 13—18 July 2003). 2003. Vol. 1—5. P. 1389—1396.
12. Guo Z., Turner R., Da Silva A.D., Sauders N., Schroeder F., Cetlin P.R., Schill J.-P. Introduction of materials modelling into processing simulation. Mater. Sci. Forum. 2013. Vol. 762. P. 266—276.
13. Malinov S., Sha W. Application of artificial neural networks for modeling correlations in titanium alloys. Mater. Sci. Eng. A. 2004. Vol. 365. P. 202—211.
14. Saunders N., Guo Z., Li X., Miodownik A.P., Schillé J.P. Computer modelling of materials properties and behavior. In: 10th Int. symp. on superalloys (Champion, Pennsylvania, 19—23 Sept. 2004). 2004. P. 849—858.
15. Guo Z., Saunders N., Li X., Miodownik A.P., Schillé J.P. Modelling phase transformations and material properties of commercial titanium alloys. Rare Metal Mater. Eng. 2006. Vol. 35 (Sub. 1). P. 108—111.
16. Yang H.Y., Le Q.H., Zhao Y.Q. Research on the intelligent approach of material property prediction and optimization. In: Titanium-2003. Science and Technology: Proc. 10th World conf. on titanium (Hamburg, Germany, 13—18 July 2003). 2003. Vol. 1—5. P. 1405—1412.
17. Furrer D., Chtterjee A., Shen G., Woodfield A., Semiatin S.L., Miller J., Glavicic M., Goetz R., Barker D. Development and application of microstructure and mechanical propertie models for titanium alloys. In: Titanium-2007. Science and Technology: Proc. 11th World conf. on titanium (Kioto, Japan, 3—7 June 2007). 2007. P. 781—784.
18. Nosov V.K., Nesterov P.А., Ermakov Е.I. 3D modelirovanie strukturnogo stroeniya odnofaznykh tverdykh rastvorov α-titanovykh splavov [3D modeling of a structural structure of single-phase solid solutions of α-titanium alloys]. Metallovedenie i termicheskaya obrabotka metallov. 2016. No. 3. P. 34—39.
19. Egorova Yu.B., Uvarov V.N., Davydenko L.V., Davydenko R.A. Ispol’zovanie rezul’tatov promyshlennogo kontrolya dlya prognozirovaniya mekhanicheskikh svoistv polufabrikatov iz titanovykh splavov [Use of results of industrial control for forecasting of mechanical properties of semifinished products from titanium alloys]. Metallovedenie i termicheskaya obrabotka metallov. 2017. No. 6. P. 52—58.
20. Аleksandrov V.К., Аnoshkin N.F., Bochvar G.А., Brun M.Ya., Gel’man A.A., Domnin I.I., D’yakonov Yu.A., Elagina L.A., Ermanyuk M.Z., Zvereva Z.F., Kaganovich A.Z., Kaganovich I.N., Kazakov K.A., Kushakevich S.A., Lovtsov V.M., Lokshin M.Z., Plotnikova T.P., Pol’kin I.S., Sigalov Yu.M., Sobolev Yu.P., Sogrishin Yu.P., Tetyukhin V.V., Usova V.V., Tsapalova N.K. Polufabrikaty iz titanovykh splavov [Semi-finished products from titanium alloys]. Мoscow: Мetallurgiya, 1979.
21. Аleksandrov V.К., Аnoshkin N.F., Belozerov А.P., Bochvar G.A., Brun M.Ya., Gel’man A.A., Danilkin V.A., D’yakonov Yu.A., Evmenov O.P., Ermanyuk M.Z., Illarionov E.I., Isaev A.A., Kazakov K.A., Koroleva A.I., Koryakin S.S., Kushakevich S.A., Leder O.R., Lovtsov V.M., Lokshin M.Z., Miklyaev P.G., Pavlov S.V., Pertsovskii N.Z., Pilipenko A.L., Plotnikova T.P., Pol’kin I.S., Rusanov N.V., Sigalov Yu.M., Slobtsov P.I., Sobolev Yu.P., Sogrishin Yu.P., Tetyukhin V.V., Timofeeva L.N., Usova V.V., Tsapalova N.K., Shamraev V.N., Shakhanova G.V., Shilin O.K. Polufabrikaty iz titanovykh splavov [Semi-finished products from titanium alloys]. Мoscow: VILS, 1996.
22. Kolachev B.A., Mal’kov А.V. Fizicheskie osnovy razrusheniya titana [Physical bases of destruction of the titan]. Мoscow: Мetallurgiya, 1983.
23. Ilyin A.A., Kolachev B.A., Pol’kin I.S. Titanovye splavy. Sostav, struktura, svoistva [Titanium alloys. Composition, structure, properties]. Moscow: VILS—MATI, 2009.
24. Kulaichev A.P. Metody i sredstva kompleksnogo analiza dannykh [Methods and means of the complex analysis of data]. Мoscow: Forum—Infra-M, 2006.
25. Egorova Yu.B., Pol’kin I.S., Davydenko L.V. Vozmozhnosti povysheniya kachestva pokovok diskov splava VТ6 putem korrektirovki khimicheskogo sostava [Possibilities of improvement of quality of forgings of disks of VT6 alloy by correction of the chemical composition]. Tekhnologiya legkikh splavov. 2015. No. 3. P. 65—71.
Review
For citations:
Egorova Yu.B., Davydenko L.V., Belova S.B., Chibisova E.V. Forecasting of mechanical properties of VТ6 and VТ3-1 titanium alloys forgings depending on chemical composition and structure. Izvestiya. Non-Ferrous Metallurgy. 2018;(1):12-21. (In Russ.) https://doi.org/10.17073/0021-3438-2018-1-12-21