Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

La–Mn–Cu–O protective coatings on 08Kh17T interconnector steel for solid oxide fuel cells obtained by electrochemical crystallization from non-aqueous electrolyte solutions

https://doi.org/10.17073/0021-3438-2017-6-70-80

Abstract

A novel method was developed to form a protective layer on 08KhG17T stainless steel used to make interconnectors for solid oxide fuel cells. The method was based on the electrocrystallization of metals from non-aqueous electrolyte solutions on the stainless-steel interconnector surface with subsequent thermal treatment. Chemical composition of electrolyte was selected so that the surface is coated with an oxide protective layer of the following composition: LaMn0,9Cu0,1O3. As a result, a uniform oxide layer was formed on the stainless steel interconnector surface to protect stainless steel against high-temperature oxidation resulting in degraded functional properties of the interconnector. The coatings formed were characterized by means of grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy from the surface and in the cross section. Elemental and phase composition analyses have shown that the main components of the protective coatings are compounds with perovskite and spinel structures. The protective coating in contact with cathode material based on lanthanum strontium manganite have shown significantly lowered chromium penetration from steel as a result of diffusion annealing in comparison with the sample without the protective coating. Interconnector bonding to the protective coating has shown no noticeable degradation during at least 500 h at 850 °C in ambient air.

About the Authors

M. V. Ananyev
Institute of High Temperature Electrochemistry of Ural Branch of Russian Academy of Sciences (IHTE UrB RAS) Ural Federal University (UrFU)
Russian Federation

Dr. Sci. (Chem.), Head of Solid oxide fuel cells (SOFC) laboratory, (IHTE UrB RAS), Associate professor, Department of the electrochemical engineering technology, (UrFU)
620137, Russia, Yekaterinburg, S. Kovalevskoy str., 22/Academicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19



A. A. Solodyankin
Institute of High Temperature Electrochemistry of Ural Branch of Russian Academy of Sciences (IHTE UrB RAS) Ural Federal University (UrFU)
Russian Federation

Laboratory assistant, SOFC Laboratory, IHTE UB RAS, Master student, UrFU.
620137, Russia, Yekaterinburg, S. Kovalevskoy str., 22/Academicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19



V. A. Eremin
Institute of High Temperature Electrochemistry of Ural Branch of Russian Academy of Sciences (IHTE UrB RAS) Ural Federal University (UrFU)
Russian Federation

Junior researcher, SOFC Laboratory, IHTE UB RAS, Junior researcher, UrFU.
620137, Russia, Yekaterinburg, S. Kovalevskoy str., 22/Academicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19



A. S. Farlenkov
Institute of High Temperature Electrochemistry of Ural Branch of Russian Academy of Sciences (IHTE UrB RAS) Ural Federal University (UrFU)
Russian Federation

Engineer, SOFC Laboratory, IHTE UB RAS, Junior researcher, UrFU.
620137, Russia, Yekaterinburg, S. Kovalevskoy str., 22/Academicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19



A. V. Khodimchuk
Institute of High Temperature Electrochemistry of Ural Branch of Russian Academy of Sciences (IHTE UrB RAS) Ural Federal University (UrFU)
Russian Federation

Senior laboratory assistant, SOFC Laboratory, IHTE UB RAS, Engineer, UrFU.
620137, Russia, Yekaterinburg, S. Kovalevskoy str., 22/Academicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19



A. V. Fetisov
Institute of Metallurgy of Ural Branch of Russian Academy of Sciences (IMET UrB RAS)
Russian Federation

Dr. Sci. (Chem.), Leading researcher, Laboratory of statics and kinetics of the processes
620016, Russia, Yekaterinburg, Amundsena str., 101



A. A. Chernik
Belarusian State Technological University (BSTU)
Belarus

Cand. Sci. (Chem.), Head of the Department of chemistry, technology of the electrochemical engineering and materials for the electronics (CTEEME), BSTU.
Belarus Republic, 220006, Minsk, Sverdlova str., 13a



V. V. Yaskelychik
Belarusian State Technological University (BSTU)
Belarus

Postgraduate student, Department of CTEEME, BSTU.
Belarus Republic, 220006, Minsk, Sverdlova str., 13a



T. N. Ostanina
Ural Federal University (UrFU)
Russian Federation

Dr. Sci. (Chem.), Prof., UrFU.
620002, Russia, Yekaterinburg, Mira str., 19



Yu. P. Zaikov
Institute of High Temperature Electrochemistry of Ural Branch of Russian Academy of Sciences (IHTE UrB RAS) Ural Federal University (UrFU)
Russian Federation

Dr. Sci. (Chem.), Science manager of IHTE UB RAS, Head of Department of the electrochemical engineering technology, UrFU.
620137, Russia, Yekaterinburg, S. Kovalevskoy str., 22/Academicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19



References

1. Shaigan N., Qu W., Ivey D.G., Chen W. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J. Power Sources. 2010. No. 195. P. 1529—1542.

2. ГОСТ 5632-72. Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки. М.: Изд-во стандартов, 1997; GOST 5632-72. Stali vysokolegirovannye i splavy korrozionno-stoikie, zharostoikie i zharoprochnye. Marki [There were high-alloy also alloys corrosion resistant, heat-resistant and heat resisting. Brands]. Moscow: Izdatel’stvo standartov, 1997.

3. Gannon P., Amendola R. High-temperature, dual-atmosphere corrosion of solid-oxide fuel cell interconnects. JOM. 2012. No. 64. P. 1470—1476.

4. Lin Ch. K., Liu Y. A., Wu S. H., Liu C.K., Lee R.Y. Joint strength of a solid oxide fuel cell glass—ceramic sealant with metallic interconnect in a reducing environment. J. Power Sources. 2015. No. 280. P. 272—288.

5. Qu W., Jian L., Hill J.M., Ivey D.G. Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects. J. Power Sources. 2006. No. 153. P. 114—124.

6. Petric A., Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures. J. Amer. Ceram. Soc. 2007. No. 90. P. 1515—1520.

7. Magdefrau N.J. Evaluation of solid oxide fuel cell interconnect coatings: Reaction layer microstructure, chemistry and formation mechanisms: Abstr. Dis. of PhD. Storrs: University of Connecticut, 2013.

8. Yang Z., Xia G.G., Maupin G.D., Stevenson J.W. Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications. J. Electrochem. Soc. 2006. No. 153. P. 1852—1858.

9. Johnson C., Orlovskaya N., Coratolo A., Cross C., Wu J., Gemmen R., Liu X. The effect of coating crystallization and substrate impurities on magnetron sputtered doped LaCrO3 coatings for metallic solid oxide fuel cell interconnects. Int. J. Hydrogen Energy. 2009. No. 34. P. 2408—2415.

10. Park B.K., Song R.H., Lee S.B., Lim T.H., Park S.J., Jung W., Lee J.W. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route. J. Power Sources. 2017. No. 348. P. 40—47.

11. Przybylski K., Brylewski T., Durda E., Gawel R., Kruk A. Oxidation properties of the Crofer 22 APU steel coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC interconnect applications. J. Therm. Anal. Calorimetr. 2014. No. 116. P. 825—834.

12. Huang W., Gopalan S., Pal U.B., Basu S.N. Evaluation of electrophoretically deposited CuMn1.8O4 spinel coatings on Crofer 22 APU for solid oxide fuel cell interconnects. J. Electrochem. Soc. 2008. No. 155. P. 1161—1667.

13. Lee S.I., Hong J., Kim H., Son J.W., Lee J.H., Kim B.K., Lee H.W., Yoon K.J. Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells. J. Electrochem. Soc. 2014. No. 161. P. 1389—1394.

14. Yoon J.S., Lee J., Hwang H.J., Whang C.M., Moon J.W., Kim D.H. Lanthanum oxide-coated stainless steel for bipolar plates in solid oxide fuel cells (SOFCs). J. Power Sources. 2008. No. 181. P. 281—286.

15. Lim D.P., Lim D.S., Oh J.S., Lyo I.W. Influence of posttreatments on the contact resistance of plasma-sprayed La0.8Sr0.2MnO3 coating on SOFC metallic interconnector. Surf. Coat. Technol. 2005. No. 200. P. 1248—1251.

16. Mikkelsen L., Chen M., Hendriksen P.V., Persson A., Pryds N., Rodrigo K. Deposition of La0.8Sr0.2Cr0.97V0.03O3 and MnCr2O4 thin films on ferritic alloy for solid oxide fuel cell application. Surf. Coat. Technol. 2007. No. 202. P. 1262—1266.

17. Johnson C., Gemmen R., Orlovskaya N. Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material. Composites. Pt. B: Engineering. 2004. No. 35. P. 167—172.

18. Bateni M.R., Wei P., Deng X.H., Petric A. Spinel coatings for UNS 430 stainless steel interconnects. Surf. Coat. Technol. 2007. No. 201. P. 4677—4684.

19. Fontana S., Amendola R., Chevalier S., Piccardo P., Caboche G., Viviani M., Molins R., Sennour M. Metallic interconnects for SOFC: Characterization of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. J. Power Sources. 2007. No. 171. P. 652—662.

20. Ebrahimifar H., Zandrahimi M. Influence of oxide scale thickness on electrical conductivity of coated AISI 430 steel for use as interconnect in solid oxide fuel. Ionics. 2012. No. 18. P. 615—624.

21. Ананьев М.В., Еремин В.А., Солодянкин А.А., Яскельчик В.В. Электрохимический способ нанесения электропроводящего оксидного защитного покрытия интерконнектора: Пат. 2016139988 (РФ). 2016; Anan’ev M.V., Eremin V.A., Solodyankin A.A., Yaskel’chik V.V. Elektrokhimicheskii sposob naneseniya elektroprovodyashchego oksidnogo zashchitnogo pokrytiya interkonnektora [Electrochemical way of drawing an electroconductive oxidic sheeting of an interkonnektor]: Pat. 2016139988 (RF). 2016.

22. Сухотин А.М. (ред.). Справочник по электрохимии. Л.: Химия. 1981; Sukhotin A.M. (Ed.) Spravochnik po elektrokhimii [Reference book on electrochemistry]. Leningrad: Khimiya, 1981.


Review

For citations:


Ananyev M.V., Solodyankin A.A., Eremin V.A., Farlenkov A.S., Khodimchuk A.V., Fetisov A.V., Chernik A.A., Yaskelychik V.V., Ostanina T.N., Zaikov Yu.P. La–Mn–Cu–O protective coatings on 08Kh17T interconnector steel for solid oxide fuel cells obtained by electrochemical crystallization from non-aqueous electrolyte solutions. Izvestiya. Non-Ferrous Metallurgy. 2017;(6):70-80. (In Russ.) https://doi.org/10.17073/0021-3438-2017-6-70-80

Views: 799


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)