Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Kinetics and high-temperature oxidation mechanism of ceramic materials in ZrB2–SiC–MoSi2 system

https://doi.org/10.17073/0021-3438-2017-6-63-69

Abstract

The paper focuses on the production of compact ceramics ZrB2–SiC–(MoSi2) using the hybrid SHS + HP technology, as well as on its phase composition, structure and high-temperature oxidation kinetics. Reaction mixtures were obtained according to the following scheme: mechanical activation of Si + C powders; wet admixing of Zr, B and MA powders of Si + C mixture; drying of mixtures in a drying cabinet. The composite SHS powder ZrB2–SiC was obtained in the SHS-reactor in combustion mode by element synthesis.
Compact samples were produced using the hot pressing method by SHS powder consolidation. Resulting samples characterized by a homogeneous structure and low residual porosity not exceeding 1,3 %. In total, two compositions were chosen for tests: the first one rated for ZrB2 + 25 % SiC formation, the second one similar to the first one, but with the addition of 5 % commercial MoSi2 powder. The microstructure of samples is represented by dispersed dark gray rounded SiC grains distributed among the light faceted ZrB2 grains.
The sample with the MoSi2 additive has a more finely dispersed structure. High-temperature oxidation of samples at 1200 °С forms complex oxide films SiO2–ZrO2–(B2O3) about 20–30 μm in thickness on their surface, which serve as an effective diffusion barrier and reduce oxidation rate. The complex ZrSiO4 oxide is also present in the oxide film structure after long holding times (more than 10 hours). In addition, after 10 hours of testing, a slight decrease in the mass of the samples is observed, which is due to the volatilization of B2O2, CO/CO2, MoO3 gaseous oxidation products. The sample with MoSi2 added demonstrates better resistance to oxidation.

About the Authors

I. V. Iatsyuk
Research of SHS Research & Education Center MISIS-ISMAN
Russian Federation

Postgraduate of the Department of powder metallurgy and multifunctional coatings (PMaMC), Engineer of SHS Research & Education Center MISIS–ISMAN
119049, Moscow, B-49, Leninsky Prospect, 4



A. Yu. Potanin
Research of SHS Research & Education Center MISIS-ISMAN
Russian Federation

Cand. Sci. (Tech.), Research of SHS Research & Education Center MISIS-ISMAN.
119049, Moscow, B-49, Leninsky Prospect, 4



S. I. Rupasov
Research of SHS Research & Education Center MISIS-ISMAN
Russian Federation

Senior researcher of the Department of PMaMC
119049, Moscow, B-49, Leninsky Prospect, 4



E. A. Levashov
Research of SHS Research & Education Center MISIS-ISMAN
Russian Federation

Dr. Sci. (Tech.), Prof., Acad. of Russian Academy of Natural Science, Head of the Department of PMaMC, Head of SHS Research & Education Center MISIS–ISMAN.
119049, Moscow, B-49, Leninsky Prospect, 4



References

1. Kuwabara K. Some characteristics and applications of ZrB2 ceramics. Bull. Ceram. Soc. Jpn. 2002. Vol. 37. No. 4. P. 267—271.

2. Brown A.S. Hypersonic designs with a sharp edge. Aerospace Am. 1997. Vol. 35. No. 9. P. 20—21.

3. Mroz C. Zirconium diboride. Am. Ceram. Soc. Bull. 1994. Vol. 73. No. 6. P. 141—142.

4. Norasetthekul S., Eubank P.T., Bradley W.L., Bozkurt B., Stucker B. Use of zirconium diboride-copper as an electrode in plasma applications. J. Mater. Sci. 1999. Vol. 34. No. 6. P. 1261—1270.

5. Wuchina E., Opila E., Opeka M., Fahrenholtz W., Talmy I. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Interface. 2007. Vol. 16. No. 4. P. 30 — 36.

6. Grigoriev O., Galanov B., Lavrenko V., Panasyuk A., Ivanov S., Koroteev A., Nickel K. Oxidation of ZrB2—SiC—ZrSi2 ceramics in oxygen. J. Europ. Ceram. Soc. 2010. Vol. 30. P. 2397—2405.

7. Licheri R., Orrù R., Musa C., Cao G. Combination of SHS and SPS techniques for fabrication of fully dense ZrB2—ZrC—SiC composites. Mater. Lett. 2008. Vol. 62. P. 432—435.

8. Wu W.W., Zhang G.J., Kan Y.M., Wang P.L., Vanmeense K., Vleugels J., Vander Biest O. Synthesis and microstructural features of ZrB2—SiC-based composites by reactive spark plasma sintering and reactive hot pressing. Scr. Mater. 2007. Vol. 57. P. 317—320.

9. Monteverde F., Scatteia L. Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application. J. Am. Ceram. Soc. 2007. Vol. 90. No. 4. P. 1130—1138.

10. Monteverde F. Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl. Phys. 2006. Vol. A82. P. 329— 337.

11. Opeka M.M., Talmy I.G., Wuchina E.J., Zaykoski J.A., Causey S.J. Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 1999. Vol. 19. P. 2405—2414.

12. Grigoriev O., Galanov B., Kotenko V., Ivanov S., Koroteev A., Brodnikovsky N. Mechanical properties of ZrB2—SiC(ZrSi2) ceramics. J. Eur. Ceram. Soc. 2010. Vol. 30. P. 2173—2181.

13. Silvestroni L., Landi E., Bejtka K., Chiodoni A., Sciti D. Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers. J. Eur. Ceram. Soc. 2015. Vol. 35. P. 4377—4387.

14. Silvestroni L., Meriggi G., Sciti D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros. Sci. 2014. Vol. 83. P. 281—291.

15. Макаров А.В., Багаратьян Н.В., Збежнева С.Г., АлешкоОжевская Л.А., Георгобиани Т.П. Ионизация и фрагментация молекул B2O2 и BO при электронном ударе. Вестн. МГУ. Сер. 2. Химия. 2000. Т. 41. No. 4. С. 227—230; Makarov A.V., Bagarat’yan N.V., Zbezhneva S.G., Aleshko-Ozhevskaya L.A., Georgobiani T.P. Ionizatsiya i fragmentatsiya molekul B2O2 i BO pri elektronnom udare [Ionization and fragmentation of the molecules B2O2 and BO at electronic blow]. Vestnik. MGU. Ser. 2. Khimiya. 2000. Vol. 41. No. 4. P. 227—230.

16. Eremina E.N., Kurbatkina V.V., Levashov E.A., Rogachev A.S., Kochetov N.A. Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo—10%B mixture. Chem. for Sustainable Develop. 2005. Vol. 13. P. 197—204.

17. Fahrenholtz W.G. Thermodynamic analysis of ZrB2—SiC oxidation: formation of a SiC-Depleted region. J. Am. Ceram. Soc. 2007. Vol. 90. No. 1 P. 143—148.

18. Parthasarathy T.A., Rapp R.A., Opeka M., Cinibulk M.K. Modeling oxidation kinetics of SiC-containing refractory diborides. J. Am. Ceram. Soc. 2012. Vol. 95 No. 1. P. 338—349.

19. Eakins E., Jayaseelan D.D., Lee W.E. Toward oxidation-resistant ZrB2-SiC ultra high temperature ceramics. Metall. Mater. Trans. A. 2011. Vol. 42. No. 4. P. 878—887.

20. Gao D., Zhang Y., Fu J., Xu C., Song Y., Shi X. Oxidation of zirconium diboride—silicon carbide ceramics under an oxygen partial pressure of 200 Pa: Formation of zircon. Corros. Sci. 2010. Vol. 52. No. 10. P. 3297—3303.

21. Silvestroni L, Sciti D. Effects of MoSi2 additions on the properties of Hf—and Zr—B2 composites produced by pressureless sintering. Scripta Mater. 2007. Vol. 57. P. 165—168.

22. Potanin A.Yu., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Shvindina N.V., Sviridova T.A. Kinetics and oxidation mechanism of MoSi2—MoB ceramics in the 600—1200 °C temperature range. Ceram. Int. 2017. Vol. 43. No. 13. P. 10478—10486.

23. Яцюк И.В., Погожев Ю.С., Левашов Е.А., Новиков А.В., Кочетов Н.А., Ковалев Д.Ю. Особенности получения и высокотемпературного окисления СВС-керамики на основе борида и силицида циркония. Изв. вузов. Порошк. металлургия и функц. покрытия. 2017. No. 1. С. 29—41; Iatsyuk I.V., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Kochetov N.A., Kovalev D.Yu. Osobennosti polucheniya i vysokotemperaturnogo okisleniya SVS-keramiki na osnove borida i silitsida tsirkoniya [Features of production and high-temperature oxidation of SHS-ceramics based on zirconium boride and zirconium silicide]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2017. No. 1. Р. 29—41.

24. Яцюк И.В., Погожев Ю.С., Новиков А.В. Синтез высокотемпературной керамики ZrB2—SiC в режиме горения. Цвет. металлы. 2017. No. 12. С. 67—73; Iatsyuk I.V., Pogozhev Yu.S., Novikov A.V. Sintez vysokotemperaturnoi keramiki ZrB2—SiC v rezhime goreniya [Synthesis of high-temperature ceramics ZrB2—SiC in the combustion regime]. Tsvet. metally. 2017. No. 12. P. 67—73.

25. Kiryukhantsev-Korneev P.V., Lemesheva M., Yatsyuk I., Shtansky D.V., Levashov E.A. Comparative investigation of Zr—B—(N), Zr—Si—B—(N), and Zr—Al—Si—B—(N) hard coatings. 44-th Inter. Conf. on metallurgical coatings and thin films (ICMCTF) (San Diego, California, USA, April 23—28, 2017). Р. 50—51.

26. Sciti D., Guicciardi S., Bellosi A. Properties of apressureless-sintered ZrB2—MoSi2 ceramic composite. J. Am. Ceram. Soc. 2006. Vol. 7. P. 2320—2322.

27. Yu Y., Luo R., Xiang Q., Zhang Y., Wanga T. Antioxidation properties of a BN/SiC/Si3N4—ZrO2—SiO2 multilayer coating for carbon/carbon composites. Surf. & Coat. Technol. 2015. Vol. 277. P. 7—14.

28. Liu J., Cao L.-Y., Huang J.-F., Xin Y., Yang W.-D., Fei J., Yao C.-Y. A ZrSiO4/SiC oxidation protective coating for carbon/carbon composites. Surf. & Coat. Technol. 2012. Vol. 206. P. 3270—3274.


Review

For citations:


Iatsyuk I.V., Potanin A.Yu., Rupasov S.I., Levashov E.A. Kinetics and high-temperature oxidation mechanism of ceramic materials in ZrB2–SiC–MoSi2 system. Izvestiya. Non-Ferrous Metallurgy. 2017;(6):63-69. (In Russ.) https://doi.org/10.17073/0021-3438-2017-6-63-69

Views: 1178


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)