Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Study of texture and microstructure formation and anisotropy of properties of aluminum-lithium alloy 1420 sheets when rolling

https://doi.org/10.17073/0021-3438-2017-6-45-52

Abstract

The article shows the evolution of the crystallographic texture and anisotropy of properties during the cold rolling of Al–Mg–Li aluminum-lithium alloy 1420 sheets. Hot-rolled 1420 alloy billets were rolled in a cold condition with intermediate quenching under the following schedule: 7,3 mm → 4,8 mm → 3,0 mm → 1,8 mm. After each pass samples are taken for mechanical testing and structure analysis using optical microscopy and diffractometry. Sheets in all the analyzed conditions characterize by a deformed fiber structure and a considerable anisotropy of mechanical properties. Maximum ductility is observed at 45° to the rolling direction. The nature of anisotropy formed during hot rolling does not change during the cold rolling process. Sheets made of 1420 alloy maintain non-recrystallized structures and have a sharp deformation texture at all stages of rolling. Thus, pole figure and preferred orientation analysis revealed an increase in the volume ratio of rolling textures (slow for brass type and fast for S type) with the growing total cold rolling deformation. Recrystallization textures (R type) are present in small quantities only after hot rolling. The volume fraction of a textureless component decreases with the growth of deformation. The results obtained in the studies allow for the conclusion that first of all it is necessary to provide recrystallization in 1420 alloy sheets at the stage of hot rolling and obtain a recrystallized hot rolled billet for subsequent cold rolling in order to reduce the volume fraction of deformation texture and anisotropy of properties.

About the Authors

F. V. Grechnikov
Samara Scientific Center RAS
Russian Federation

Dr. Sci. (Eng.), Acad. of Russian Academy of Sciences, First deputy chairman of the Samara Scientific Center RAS
443001, Russia, Samara, Studencheskiy per., 3А



Ya. A. Erisov
Samara University
Russian Federation

Cand. Sci. (Eng.), Senior engineer of NIL-37, Samara University
443086, Russia, Samara, Moskovskoe shosse, 34



S. V. Surudin
Samara University
Russian Federation

Cand. Sci. (Eng.), Engineer, Department of metal forming processes, Samara University.
443086, Russia, Samara, Moskovskoe shosse, 34



M. S. Oglodkov
All-Russia Institute of Aviation Materials
Russian Federation

Cand. Sci. (Eng.), Senior researcher, All-Russia Institute of Aviation Materials
105005, Russia, Moscow, Radio str., 17



References

1. Gureeva M.A., Grushko O.E., Ovchinnikov V.V. Svarivaemye alyuminievye splavy v konstruktsiyakh transportnykh sredstv [Welded aluminium alloys in the construction of vehicles]. Zagotovitel’nye proizvodstva v mashinostroenii. 2009. No. 3. P. 27—41.

2. Fridlyander I.N. Alyuminievye splavy v letatel’nykh apparatakh v periody 1970—2000 i 2001—2015 gg. [Aluminum alloys in aircraft in periods of 1970—2000 and 2001—2015]. Metallovedenie i termicheskaya obrabotka metallov. 2001. No. 1. С. 5—9.

3. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoi tekhniki [Materials and chemical technologies for aircraft engineering]. Vestnik Rossiiskoi akademii nauk. 2012. Vol. 82. No. 6. P. 520.

4. Wanhill R.J.H. Status and prospects for aluminium-lithium alloys in aircraft structures. Int. J. Fatigue. 1994. Vol. 16(1). P. 3—20.

5. Khokhlatova L.V., Kolobnev N.I., Oglodkov M.S., Mikhailov E.D. Alyuminievye splavy dlya samoletostroeniya [Aluminum alloys for aircraft construction]. Metallurg. 2012. No. 5. P. 31—35.

6. Kolobnev N.I., Khokhlatova L.V., Antipov V.V. Perspektivnye alyuminievye splavy dlya samoletnykh konstruktsii [Perspective aluminum alloys for aircraft structures]. Tekhnologiya legkikh splavov. 2007. No. 2. P. 35—38.

7. Elagin V.I., Zakharov V.V. Modern Al-Li alloys and prospects of their development. Metal Sci. Heat Treatment. 2013. Vol. 55. P. 184—190.

8. Il’in A.A., Zakharov V.V., Betsofen M.S., Osintsev O.E., Rostova T.D. Texture and anisotropy of the mechanical properties of an Al—Mg—Li—Zn—Sc—Zr alloy. Russ. Metallurgy. 2008. No. 5. P. 406—412.

9. Rioja R., Liu J. The evolution of Al—Li base products for aerospace and space applications. Metal. Mater. Trans. 2012. Vol. 43A. P. 3325—3337.

10. Grechnikov F.V. Deformirovanie anizotropnykh materialov (rezervy intensifikatsii) [Deformation of anisotropic materials (reserves of intensification)]. Moscow: Mashinostroenie. 1998.

11. Grechnikov F.V., Erisov Ya.A., Aryshenskii E.V. Proektirovanie tekhnologicheskikh rezhimov prokatki listov i lent dlya vytyazhki izdelii s minimal’nym festonoobrazovaniem [Designing of technological modes for rolling sheets and tapes for drawing products with minimal feston formation]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2011. No. 2 (26). P. 158—167.

12. Aryshenskii E.V., Aryshenskii V.Y., Grechnikova A.F., Beglov E.D. Evolution of texture and microstructure in the production of sheets and ribbons from aluminum alloy 5182 in modern rolling facilities. Metal Sci. Heat Treatment. 2014. Vol. 56. Iss. 7-8. P. 347—352.

13. Aryshenskii E.V., Serebryany V.N., Tepterev M.S., Grechnikova A.F. Study of the laws of texture formation in the alloy 8011 during cold rolling and annealing. Phys. Metal Metallograph. 2015. Vol. 116. Iss. 9. P. 925—931.

14. Oglodkov M.S., Khokhdatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vliyanie termomekhanicheskoi obrabotki na svoistva i strukturu splava sistemy Al—Cu—Mg—Li—Zn [The effect of thermomechanical processing on the properties and structure of alloy Al—Cu—Mg—Li—Zn]. Aviatsionnye materialy i tekhnologii. 2010. No. 4. P. 7—11.

15. Hales S.J., Hafley R.A. Texture and anisotropy in Al-Li alloy 2195 plate and near-net-shape extrusions. Mater. Sci. Eng. A. 1998. Vol. 257. No. 1. P. 153—164.

16. Setyukov O.A., Kolobnev N.I., Khokhlatova L.B., Oglodkov M.S. Vliyanie kristallograficheskikh orientirovok na svoistva plit iz Al—Li splavov V-1461 i 1424 [Influence of crystallographic orientations on the properties of plates of Al—Li alloys V-1461 and 1424]. Tekhnologiya legkikh splavov. 2010. No. 1. P. 100—106.

17. Klochkova Yu.Yu., Grushko O.E., Lantsova L.P., Burlyaeva I.P. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo alyuminiilitievogo splava V-1469 [The development in industrial production of semi-finished products from advanced Al—Li alloy V-1469]. Aviatsionnye materialy i tekhnologii. 2011. No. 1. P. 8—12.

18. Mizeraa J., Drivera J.H., Jezierskab E., Kurzydlowski K.J. Studies of the relationship between the microstructure and anisotropy of the plastic properties of industrial aluminum-lithium alloys. Mater. Sci. Eng. A. 1996. Vol. 212. No. 1. P. 94—101.

19. Choia S.-H., Barlata F. Prediction of macroscopic anisotropy in rolled aluminum-lithium sheet. Scripta Mater. 1999. Vol. 41. No. 9. P. 981—987.

20. Fridlyander I.N., Hohlatova L.B., Kolobnev N.I., Rendiks K., Tempus G. Razvitie termicheski stabil’nogo alyuminievo-litievogo splava 1424 dlya primeneniya v svarnom fyuzelyazhe. Metallovedenie i termicheskaya obrabotka metallov. 2002. No. 1. P. 3—7.

21. Milevskaya T.V., Rushits S.V., Tkachenko E.A., Antonov S.M. Deformatsionnoe povedenie vysokoprochnykh alyuminievykh splavov v usloviyakh goryachei deformatsii [Deformation behavior of high-strength aluminum alloys under conditions of hot deformation]. Aviatsionnye materialy i tekhnologii. 2015. No. 2 (35). P. 3—9.

22. Хохлатова Л.B., Kolobnev N.I., Lukina E.A., Ber L.B. Snizhenie anizotropii v listakh Al—Mg—Li—Zn-splava 1424 [Reduction of anisotropy in Al—Mg—Li—Zn-alloy sheets 1424]. Tsvet. metally. 2013. No. 3 (843). P. 78—81.

23. Fridlyander I.N., Khokhlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A., Kolesnikova O.K. Konstruktsionnyi splav 1424 ponizhennoi plotnosti sistemy Al—Mg—Li—Zr—Sc dlya svarnykh i klepanykh konstruktsii aviakosmicheskoi tekhniki [Constructional alloy 1424 of reduced density of the Al—Mg—Li—Zr—Sc system for welded and riveted structures of aerospace engineering]. Tekhnologiya legkikh splavov. 2002. No. 4. P. 20—23.

24. Khokhlatova L.B., Lukin V.I., Kolobnev N.I., Ioda E.N., Bazeskin A.V., Lavpenchuk V.P., Koshkin V.V., Mezentseva E.A. Perspektivnyi alyuminievo-litievyi splav 1424 dlya svarnykh konstruktsii izdelii aviakosmicheskoi tekhniki [Prospective aluminum-lithium alloy 1424 for welded structures of aerospace products]. Svarochnoe proizvodstvo. 2009. No. 3. P. 7—10.

25. Erisov Ya.A., Grechnikov F.V., Oglodkov M.S. Vliyanie rezhimov izgotovleniya listov iz splava v-1461 na kristallografiyu struktury i anizotropiyu svoistv [The influence of the production modes of sheets of the alloy V-1461 on the crystallography of the structure and the anisotropy of the properties]. Izvestiya vuzov. Tsvet. metallurgiya. 2015. No. 6. P. 36—42.

26. Longzhou M., Jianzhong C., Xiaobo Z.A. Study on improving the cold-forming property of Al—Mg—Li alloy 01420. Adv. Perform. Mater. 1997. Vol. 4. P. 105—114.

27. Kursikov Yu.A., Moskvichev G.G., Grushko O.E., Vinokurov N.D., Smakovskaya A.V. Issledovanie sklonnosti splava 01420 k obrazovaniyu rassloenii [Study of the propensity of the alloy 01420 to form bundles]. In: Alyuminievye splavy i spetsial’nye materially: Trudy VIAM. 1977. No. 10. P. 13—15.

28. Fridlyander N.I., Shamrai V.F., Shiryaeva N.V. Fazovyi sostav i mekhanicheskie svoistva splavov alyuminiya s magniem i litiem [Phase composition and mechanical properties of aluminum alloys with magnesium and lithium]. Izv. AN SSSR. Metally. 1965. No. 2. P. 153—156.

29. Fedorova A.V., Moskvichev G.G., Kondrasheva L.N. Prichiny nizkoi tekhnologichnosti splava 01420 pri prokatke i puti ikh ustraneniya [The reasons for the low processability of the 01420 alloy during rolling and the way to eliminate them]. Alyuminievye splavy i spetsial’nye materially: Trudy VIAM. 1977. No. 10. P. 16—18.

30. Grechnikov F.V., Erisov Y.A. Virtual material model with the given crystallographic orientation of the structure. Key Eng. Mater. 2016. Vol. 684. P. 134—142.

31. Erisov Y.A., Grechnikov F.V., Surudin S.V. Yield function of the orthotropic material considering the crystallographic texture. Struct. Eng. Mech. 2016. Vol. 58. Iss. 4. P. 677—687.


Review

For citations:


Grechnikov F.V., Erisov Ya.A., Surudin S.V., Oglodkov M.S. Study of texture and microstructure formation and anisotropy of properties of aluminum-lithium alloy 1420 sheets when rolling. Izvestiya. Non-Ferrous Metallurgy. 2017;(6):45-52. (In Russ.) https://doi.org/10.17073/0021-3438-2017-6-45-52

Views: 1102


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)