Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Power-energy conditions of round item hydro-mechanical pressing

https://doi.org/10.17073/0021-3438-2017-6-40-44

Abstract

One of the main widespread methods of metal forming is pressing characterized by a favorable plastic deformation pattern with the predominant effect of all-round compressive stresses. This allows deforming low-ductile materials and alloys with sufficiently high degrees of deformation. This paper studies plastic deformation conditions at hydro-mechanical pressing as one of pressing types. A distinctive feature of hydro-mechanical pressing as compared to other pressing types is the ability to control the movement of the billet and prevent its ejection at the final process stage. The study covers the conditions of hydro-mechanical pressing which combines the use of high-pressure working fluid and the mechanical impact of the tooling on the pressing die. Formulas for the components of the total hydro-mechanical pressing stress are derived to serve the basis for determination of the optimal process tool geometry. Taper angles of the hydro-mechanical pressing die are optimized depending on the main pressing process parameters. The dependency graphs are plotted for the ratio of pressing stress to the resistance of pressed material deformation as a result of drawing that confirmed the presence of optimum taper angles of pressing dies.

About the Authors

G. L. Kolmogorov
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Tech.), Prof., Department of dynamics and strength of machines, Perm National Research Polytechnic University
614990, Russia, Perm, Komsomolsky av., 2



A. O. Utkin
Perm National Research Polytechnic University
Russian Federation
Bachelor of engineering and technology, Postgraduate, Department of dynamics and strength of machines, Perm National Research Polytechnic University
614990, Russia, Perm, Komsomolsky av., 2


References

1. Ping Hu, Ning Ma, Li-zhong Liu, Yi-guo Zhu. Ethods and numerical technology of sheet metal cold and hot forming. Anal. Eng. 2012.

2. Nusheh M., Ahuett H., Arrambide A. (Eds.) Rectnt researches in metallurgical engineering: From extraction to forming. Rijeka: InTech, 2012.

3. McQueen H.J., Spigarelli S., Kassner M.E., Evangelista E. Hot deformation and processes of aluminum alloys. Boca Raton: CRC Press, 2011.

4. Tollen G., MacKenzie D. Handbook of Alluminum. Physical metallurgy and processes. N.Y.: Mercel Dekker Ltd., 2003. Vol. 1.

5. Bridgman P.W. The physics of high pressure. London: G. Bell. LDN. Sons Ltd., 1958.

6. Bogoyavlenskij K.N., Vagin V.A., Kobyshev A.N., Petkov G.K., Mamutov V.S., Ris V.V., Ryabinin A.G., Chalev D.I. Gidroplasticheskaja obrabota metallov (Transl. from bulg.) [Hudroplastic processind of metals]. Leningrad: Mashinostroenie; Sofia.: Tekhnika, 1988.

7. Bogoyavlensky K.N., Ris W.W., Suchich W.D. Untersuchung des hydrostatischen extrusionsverfahrens. Fertig. Techn. Betr. 1979. Bd. 29. No. 12. S. 751—753.

8. Kolmogorov G.L., Mikhailov V.G., Barkov Yu.A., Karlinskii V.L. Gidropressovanie trudnodeformiruemykh tugoplavkikh materialov i splavov [Hydro-pressing of hard refractory materials and alloys]. Moscow: Metallurgiya, 1991.

9. Beresnev B.I., Ezerskii K.I., Trushin E.V. Fizicheskie osnovy i prakticheskoe primenenie gidroekstruzii [Physical bases and practical application of hydro-extrusion]. Moscow: Metallurgiya, 1981.

10. Hill R. Theory of the plastic bulging of a metal diaphragm by lateral pressure. Phil. Sci. 1965. No. 7. P. 539—545.

11. Kachanov L.M. Fundamentals of the theory of plasticity. N.Y.: Courier Dover Publ., 2004.

12. Avitzur B. Metal forming: Processes and analysis. N.Y.: McGraw-Hill Book Co., 1968.

13. Agapitova O.Yu., Zalazinskii A.G. Modelirovanie i optimizatsiya protsessa gidromekhanicheskogo vydavlivaniya trudnoobrabatyvaemykh metallov [Modeling and optimization of the process hydraulic-mechanical squirting of difficult processed metals]. Izv. vuzov. Tsvet. metallurgiya. 2014. No. 5. P. 44—49.

14. Mal’tsev M.E., Doron’kin E.D., Ezerskii K.M. Gidrostaticheskaya obrabotka tugoplavkikh metallov [Hydrostatic processing of refractory metals]. Moscow: Metallurgiya, 1978.

15. Kato K., Mirota T., Jimma T. Trans. Jap. Soc. Mech. Eng. 1968. Vol. 34. No. 262. P. 1066.

16. Ivanov K.M., Shevchenko V.S., Jurgenson Je.E. Metod konechnyh jelementov v tehnologicheskih zadachah OMD [The finite elemebt method in the technological problems of metal forming]. Saint-Petersburg: Institut mashynostroeniya, 2000.

17. Shemjakin Ju.V. Razrabotka chislennoj modeli processa pressovanija cilindricheskih zagotovok iz aljuminievogo splava s cel’ju ispol’zovanija optimizacionnyh procedurah [Development of a numericl model of the aluminum alloy cylindrical billets forming process to be used in optimization procedures]. Aktual`nye problemy gumanitarnykh i estestvennykh nauk. 2013. No. 10. P. 62—65.

18. Kolmogorov G.L. Gidrodinamicheskaya smazka pri obrabotke metallov davleniem [Hydro-dinamic lubrication during the processing of metals by pressure]. Moscow: Metallurgiya, 1986.

19. Perlin I.L., Rajtbarg L.H. Teorija pressovanija metallov [Theory of metal pressing]. Moscow: Metallurgiya, 1964.

20. Atkins A.G. Hydrodynamic lubrication in cold rolling. Int. J. Mesh. Sci. 1974. Vol. 16. P. 1—19.

21. Grudev A.P., Zil’berg Ju.V., Tilik V.T. Trenie i smazki pri obrabotke metallov davleniem [Friction and lubricalion in thr treatment of mrtals py pressure]. Moscow: Metallurgiya, 1982.

22. Kolmogorov G.L., Kosheleva N.A., Trofimov V.N., Chernova T.V. Metod pressovaniya zagotovok [Method of pressing blanks]: Pat. 2526346 (RF). 2014.


Review

For citations:


Kolmogorov G.L., Utkin A.O. Power-energy conditions of round item hydro-mechanical pressing. Izvestiya. Non-Ferrous Metallurgy. 2017;(6):40-44. (In Russ.) https://doi.org/10.17073/0021-3438-2017-6-40-44

Views: 648


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)