SHS metallurgy of Nb–Si composites
https://doi.org/10.17073/0021-3438-2017-6-31-39
Abstract
Niobium-based composites doped with functional and alloying additives (Si, Hf, Ti, Al, etc.) have prospects for industrial applications such as aircraft engine building. Previously the authors demonstrated that such composites can be synthesized in autowave mode (combustion mode) using highly exothermic Nb2O5 mixtures with Al, Si, Hf and Ti. It was shown that hafnium actively participates in Nb2O5 reduction, and this makes it difficult to introduce it into the composite. This paper focuses on the possibility to synthesize Nb composites doped with a high amount of Hf using centrifugal SHS metallurgy. Experiments on a centrifugal unit under 40 g force demonstrated that reactive Hf replaced by its less reactive compounds Hf–Al or Hf–Ti–Si–Al in Nb2O5/Al mixtures enabled combustion in a steady frontal mode rather than in an explosive one. With the increasing size of Hf–Al granules (from 0–40 to 160–300 μm), the Hf content of resultant composites was found to grow from 1,3 to 3,8 wt.%. In case of Hf–Ti–Si–Al granules 1–3 mm in size introduced to the charge, the Hf content of synthesized composites based on niobium silicides attained a value of up to 8,1 wt.%.
Electron microscopy and X-ray diffraction analysis were used to determine the integral composition and distribution of basic and doping elements in the structural components of synthesized composites as well as their phase composition. Composites with a maximum content of Hf (8,1 wt.%) contain three structural constituents: (1) a metal Nb–Si–Ti matrix; (2) intergrain boundaries containing Nb, Ti, and Al; and (3) hafnia-based inclusions. The XRD pattern showed the presence of three phases in the composite: Nb and Nb5Si3 solid solutions as well as minor amounts of Nb3Si.
About the Authors
V. I. YukhvidRussian Federation
Dr. Sci. (Tech.), Prof., Head of Laboratory № 5 «SHS melts and cast materials», Head researcher of ISMAN
142432, Russia, Moscow Region, Chernogolovka, Academician Osipyan str., 8
D. E. Andreev
Russian Federation
Cand. Sci. (Tech.), Senior researcher of Laboratory № 5, ISMAN
142432, Russia, Moscow Region, Chernogolovka, Academician Osipyan str., 8
V. N. Sanin
Russian Federation
Dr. Sci. (Tech.), Deputy Director of ISMAN
142432, Russia, Moscow Region, Chernogolovka, Academician Osipyan str., 8
N. V. Sachkova
Russian Federation
Researcher of Laboratory № 8 «Materials science», ISMAN
142432, Russia, Moscow Region, Chernogolovka, Academician Osipyan str., 8
References
1. Bewlay B.P., Jackson M.T., Zhao J.C., Subramanian P.R., Mendiratta V.G., Lewandovski J.J. Ultrahigh-temperature Nb silicide-based composites. MRS Bulletin. 2003. Vol. 28. No. 9. P. 646—653. DOI: https://doi.org/10.1557/mrs2003.192.
2. Bewlay B.P., Jackson M.T., Gigliotti M.F.X. Niobium silicide-high-temperature in situ composite, in intermetallic compounds. Principles and practice (Eds. Fleischer R.L., Westbrook J.H.). NY.: Wiley J. & Sons, 2011. Vol. 3. P. 541—560. DOI: 10.1002/0470845856.ch26.
3. Zhao J.C., Westbrook J.H. Ultrahigh-temperature materials for jet engines. MRS Bulletin. 2003. Vol. 28. No. 9. P. 622—627. DOI: https://doi.org/10.1557/mrs2003.189.
4. Jéhanno P., Heilmaier M., Saage H., Böning M., Kestler H., Freudenberger J., Drawin S. Assessment of the high temperature deformation behavior of molybdenum silicide alloys. Mater. Sci. Eng. A. 2007. Vol. 463. P. 216—223.
5. Jéhanno P., Heilmaier M., Kestler H., Böning M., Venskutonis A., Bewlay B.P., Jackson M.R. Assessment of a powder metallurgical processing route for refractory metal silicide alloys. Metall. Mater. Trans. 2005. Vol. 36A. P. 515—523.
6. Saage H., Krüger M.,. Sturm D, Heilmaier M., Schneibel J.H., George E., Heatherly L., Somsen Ch., Eggeler G., Yang Y. Ductilization of Mo—Si solid solutions manufactured by powder metallurgy. Acta Mater. 2009. Vol. 57. No. 13. P. 3895—390.
7. Li Z., Tsakiropoulos P. Study of the effect of Ti and Ge in the microstructure of Nb—24Ti—18Si—5Ge in situ composite. Intermetallics. 2011. Vol. 19. No. 9. P. 1291—1297.
8. Kim J.H., Tabaru T., Hirai H., Kitahara A., Hanada S. Tensile properties of a refractory metal base in situ composite consisting of an nb solid solution and hexagonal Nb5Si3. Scripta Mater. 2003. Vol. 48. No. 10. P. 1439—1444.
9. Bundschuh K., Schüze M., Muller C., Greil P., Heider W. Selection of materials for use at temperatures above 1500°C in oxidizing atmospheres. J. Eur. Ceram. Soc. 1998. Vol. 18. No. 23. P. 89—91.
10. Drawin S., Monchoux J.P., Raviart J.L., Couret A. Microstructural properties of Nb—Si based alloys manufactured by powder metallurgy. Adv. Mater. Res. 2011. Vol. 278. P. 533—538. DOI: 10.4028/www.scientific.net/AMR.278.533.
11. Klemm H., Herrmann M., Schubert C. Silicon nitride composites materials with an improved high temperature oxidation resistance. Ceram. Eng. Sci. Proc. 1997. Vol. 18. P. 615—623.
12. Sadananda K., Feng C.R., Mitra R., Deevi S.C. Creep and fatigue properties of high temperature silicides and their composites. Mater. Sci. Eng. A. 1999. Vol. 261. P. 223—238.
13. Subramanian P.R., Mendiratta M.G., Dimiduk D.M., Stucke M.A. Advanced intermetallic alloys: Beyond gamma titanium aluminides. Mater. Sci. Eng. 1997. Vol. A239—A240. P. 1—13. DOI: https://doi.org/10.1016/S0921-5093(97)00555-8.
14. Saage H., Krüger M., Sturm D., Heilmaier M., Schneibel J.H., George E., Heatherly L., Somsen Ch., Eggeler G., Yang Y. Ductilization of Mo—Si solid solutions manufactured by powder metallurgy. Acta Mater. 2009. Vol. 57. No. 13. P. 3895—390.
15. Lawn B.R., Marshall D.B. Hardness, toughness and brittleness: an Indentation analysis. J. Amer. Ceram. Soc. 1979. Vol. 62. P. 347—350.
16. Bewley B.P., Jackson M.R., Subramanian P.R. Processing high temperature refractory-metal silicide in situ composites. J. Metals. 1999. Vol. 51. No. 4. P. 32—36. DOI: 10.1007/s11837-999-0077-8.
17. Ma C.L., Kasama A., Tanaka H., Tan Y., Mishima Y., Hanada S. Microstructures and mechanical properties of Nb/Nb-silicide in-situ composites synthesized by reactive hot pressing of ball milled powders. Mater. Trans. JIM. 2000. Vol. 41. No. 3. P. 44—51.
18. Светлов И.Л., Бабич Б.Н., Власенко С.Я., Ефимочкин И.Ю., Тимофеева О.Б., Абузин Ю.А. Высокотемпературные ниобиевые композиты, упрочненные силицидами ниобия. Журн. функц. материалов. 2007. Т. 1. No. 2. С. 48—53; Svetlov I.L., Babich B.N., Vlasenko S.Ya., Efimochkin I.Yu., Timofeeva O.B., Abuzin Yu.A. Vysokotemperaturnye niobiyevye kompozity, uprochnennye silitsidami niobiya [High-temperature niobium composites reinforced niobium silicides]. Zhurn. funktsionalnykh materialov. 2007. Vol. 1. No. 2. P. 48—53.
19. Юхвид В.И., Алымов М.И., Санин В.Н., Андреев Д.Е., Сачкова Н.В. Синтез композиционных материалов на основе силицидов ниобия методами СВС-металлургии. Неорган. материалы. 2015. Т. 51. No. 12. С. 1347—1354; Yukhvid V.I., Alymov M.I., Sanin V.N., Andreev D.E., Sachkova N.V. Sintez kompozitsionnykh materialov na osnove silitsidov niobiya metodami SVSmetallurgii [Synthesis of composite materials based on niobium silicides via SHS metallurgy]. Neorganicheskie materialy. 2015. Vol. 51. No. 12. P. 1347—1354. DOI: 10.7868/S0002337X15110159.
20. Алымов М.И., Юхвид В.И., Андреев Д.Е., Санин В.Н. Химические превращения в волнах горения многокомпонентных смесей термитного типа. Докл. АН. Физическая химия. 2015. Т. 460. No. 2. С. 173—176; Alymov M.I., Yukhvid V.I., Andreev D.E., Sanin V.N. Khimicheskie prevrashcheniya v volnakh goreniya mnogokomponentnykh smesey termitnogo tipa [Chemical transformations in combustion waves of multicomponent mixtures of thermite type]. Doklady Akademii Nauk. Fizicheskaya khimiya. 2015. Vol. 460. No. 2. P. 173—176. DOI: 10.7868/S0869565215020140.
21. Yukhvid V.I., Vishnyakova G.A., Silyakov S.L., Sanin V.N., Kachin A.R. Structural macrokinetics of alumothermic SHS processes. Int. J. Self-Propag. High-Temp. Synth. 1996. Vol. 1. No. 1. P. 93—105.
22. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980; Zeldovich Ya. B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. Matematicheskaya teoriya goreniya i vzryva [Mathematical theory of combustion and explosion]. Moscow: Nauka, 1980.
Review
For citations:
Yukhvid V.I., Andreev D.E., Sanin V.N., Sachkova N.V. SHS metallurgy of Nb–Si composites. Izvestiya. Non-Ferrous Metallurgy. 2017;(6):31-39. (In Russ.) https://doi.org/10.17073/0021-3438-2017-6-31-39