Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

The influence of composition and heat treatment on the phase composition and mechanical properties of ML19 magnesium alloy

https://doi.org/10.17073/0021-3438-2017-6-20-30

Abstract

The samples of ML19 magnesium alloy with composition, wt. %: (0,1÷0,6)Zn–(0,4÷1,0)Zr–(1,6÷2,3)Nd–(1,4÷2,2)Y was investigated.
The influence of Nd, Y, Zn and Zr on the equilibrium phase transitions temperatures and phase composition using the Thermo-Calc software is established. The Scheil–Gulliver solidification model was also used. We show the significant liquidus temperature increase if zirconium content in alloy is higher than (0,8–0,9) wt.%. Thus, the higher temperature of melting is required (more than 800 °C).
This is undesirable if melting in a steel crucibles. The change of equilibrium fractions of phases at different temperatures in ML19 magnesium alloy with a minimum and maximum amount of alloying elements are calculated. A microstructures of the alloys with different amount of the alloying elements in as-cast and heat-treated condition has been studied using scanning electron microscopy (SEM). We investigate the concentration profile of Nd, Y, Zn and Zr in the dendritic cell of as-cast alloy. An amount of neodymium and zinc on the dendritic cell boundaries is increased. High concentration of yttrium is observed both in center and on the boundaries of the dendritic cell. High zirconium concentration mainly observed in the center of the dendritic cells. A small amount of yttrium is also present in a zirconium particles. These particles acting as the nucleation sites for the magnesium solid solution (Mg) during the solidification.
The effect of aging temperature (200 and 250 °C) on the hardness of a samples after quenching was studied. Aging at 200 °C provides a higher hardness. Investigated the change of the hardness quenched samples during the aging at 200 °C. The maximum hardness is observed in samples aged for 16-20 hours. The two-stage solution heat treatment for 2 h at 400 °C and 8 h at 500 °C with water quenching and aging at 200 °C for 16 h was performed. This heat treatment enable us to get tensile strength 306 ± 8 MPa and yield strength 161 ± ± 1 MPa with elongation 8,7 ± 1,6 %.

About the Authors

A. V. Koltygin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), Assistant prof., Department of foundry technologies and material art working (FT&MAW), National University of Science and Technology (NUST) «MISIS»
119049, Russia, Moscow, Leninskii pr., 4



V. E. Bazhenov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), Assistant prof., Department of FT&MAW, NUST «MISIS»
119049, Russia, Moscow, Leninskii pr., 4



N. V. Letyagin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Student, Department of FT&MAW, NUST «MISIS»
119049, Russia, Moscow, Leninskii pr., 4



V. D. Belov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), Head of Department of FT&MAW, NUST «MISIS»
119049, Russia, Moscow, Leninskii pr., 4



References

1. Friedrich H.E., Mordike B.L. Magnesium technology: metallurgy, design data, applications. New York: Springer, 2006.

2. Mordike B.L., Ebert T. Magnesium: properties—applications—potential. Mater. Sci. Eng.: A. 2001. Vol. 302. No. 1. P. 37—45.

3. Rokhlin L.L. Magnesium alloys containing rare earth metals: structure and properties. London: Taylor & Francis, 2003.

4. Antion C., Donnadieu. P., Deschamps A., Tassin C., Pisch A. Hardening precipitation in a Mg—4Y—3RE alloy. Acta Mater. 2003. Vol. 51. No. 18. P. 5335—5348.

5. Polmear I.J. Magnesium alloys and applications. Mater. Sci. Technol. 1994. Vol. 10. No. 1. P. 1—16.

6. Penghuai F., Liming P., Haiyan J., Jianwei C., Chunquan Z. Effects of heat treatments on the microstructures and mechanical properties of Mg—3Nd—0.2Zn—0.4Zr (wt.%) alloy. Mater. Sci. Eng.: A. 2008. Vol. 486. No. 1-2. P. 183—192.

7. Nie J. F., Muddle B. C. Characterisation of strengthening precipitate phases in a Mg—Y—Nd alloy. Acta Mater. 2000. Vol. 48. P. 1691—1703.

8. Zhao H.D., Qin G.W., Ren Y.P., Pei W.L., Chen D., Guo Y. The maximum solubility of Y in α-Mg and composition ranges of Mg24Y5–x and Mg2Y1–x intermetallic phases in Mg—Y binary system. J. Alloys and Compnd. 2011. Vol. 509. No. 3. P. 627—631.

9. Chia T.L., Easton M.A., Zhu S.M., Gibson M.A., Birbilis N., Nie J.F. The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics. 2009. Vol. 17. No. 7. P. 481—490.

10. Rokhlin L.L., Dobatkina T.V., Tarytina I.E., Timofeev V.N., Balakhchi E.E. Peculiarities of the phase relations in Mg-rich alloys of the Mg—Nd—Y system. J. Alloys and Compnd. 2004. Vol. 367. No. 1-2. P. 17—19.

11. Мухина И.Ю., Дуюнова В.А., Фролов А.В., Уридия З.П. Влияние легирования РЗМ на жаропрочность литейных магниевых сплавов. Металлургия машиностроения. 2014. No. 5. C. 34—38; Mukhina I.Yu., Duyunova V.A., Frolov A.V., Uridiya Z.P. Vliyanie legirovaniya RZM na zharoprochnost’ liteinykh magnievykh splavov [Effect of RE alloying on the high-temperature strength of casting magnesium alloys]. Metallurgiya mashinostroeniya. 2014. No. 5. C. 34—38.

12. Vinotha D., Raghukandan K., Pillai U.T.S., Pai B.C. Grain refining mechanisms in magnesium alloys-An overview. Trans. Indian Inst. of Metals. 2009. Vol. 62. P. 521—532.

13. Changjiang S., Qingyou H., Qijie Z. Review of grain refinement methods for as-cast microstructure of magnesium alloy. China Foundry. 2009. Vol. 6. P. 93—103.

14. Polmear I.J. Light Alloys, fourth ed. Oxford: Butterworth-Heinemann, 2005.

15. Chandler H. (Ed.) Heat treater’s guide: practices and procedures for nonferrous alloys. Ohio: ASM International, 1996.

16. Nie J.F., Muddle B.C. Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °С. Scripta Mater. 1999. Vol. 40. No. 10, Р. 1089—1094.

17. Nie J.F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater. 2003. Vol. 48. No. 8. P. 1009—1015.

18. Mengucci P., Barucca G., Riontino G., Lussana D., Massazza M., Ferragut R., Hassan Aly E. Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater. Sci. Eng.: A. 2008. Vol. 479. No. 1-2. P. 37—44.

19. Kumar N., Choudhuri D., Banerjee R., Mishra R.S. Strength and ductility optimization of Mg—Y—Nd—Zr alloy by microstructural design. Int. J. Plasticity. 2015. Vol. 68. P. 77—97.

20. Feng H., Liu H., Cao H., Yang Y., Xu Y., Guan J. Effect of precipitates on mechanical and damping properties of Mg—Zn—Y—Nd alloys. Mater. Sci. Eng.: A. 2015. Vol. 639. P. 1—7.

21. Suzuki M., Kimura T., Koike J., Maruyama K. Effects of zinc on creep strength and deformation substructures in Mg—Y alloy. Mater. Sci. Eng.: A. 2004. Vol. 387-389. P. 706—709.

22. Andersson J.O., Helander T., Höglund L., Shi P.F., Sundman B. Thermo-Calc and DICTRA, Computational tools for materials science. CALPHAD. 2002. Vol. 26. P. 273—312.

23. Thermo-Calc Software TTMG3 Magnesium alloys database version 3 (accessed 1 June 2017).

24. Gulliver G.H. The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. of Metals. 1913. Vol. 9. P. 120—157.

25. Scheil E. Bemerkungen zur Schichtkristallbildung. Zeitschrift für Metallkunde. 1942. Bd. 34. S. 70—72.

26. Zhang H., Fan J., Zhang L. Wu G., Liu W., Cui W., Feng S. Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg—4Y—3Nd—1Gd—0.2Zn—0.5Zr alloy. Mater. Sci. Eng.: A. 2016. Vol. 677. P. 411—420.

27. Rzychoń T., Kiełbus A. Microstructure of WE43 casting magnesium alloys. J. Achievements Mater. Manufactur. Eng. 2007. Vol. 21. P. 31—34.


Review

For citations:


Koltygin A.V., Bazhenov V.E., Letyagin N.V., Belov V.D. The influence of composition and heat treatment on the phase composition and mechanical properties of ML19 magnesium alloy. Izvestiya. Non-Ferrous Metallurgy. 2017;(6):20-30. (In Russ.) https://doi.org/10.17073/0021-3438-2017-6-20-30

Views: 780


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)