Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

COMPARISON OF PITTING CORROSION TENDENCY FOR CASTINGS MADE OF AL6CA, AL1FE, AL6CA1FE EXPERIMENTAL ALLOYS AND AK12M2 INDUSTRIAL ALLOY

https://doi.org/10.17073/0021-3438-2017-5-75-81

Abstract

The study covers the electrochemical and corrosion behavior of 4 alloys (wt.%): Al–6Ca (Al6Ca), Al–6Ca–1Fe (Al6Ca1Fe), Al–1Fe (Al1Fe), AK12M2. High Fe content (up to 1 %) in the alloys is required for high productivity of die-casting processes. Electrochemical tests were conducted in the 3 % NaCl aqueous solution at 26±0,5 °С using the IPC-Pro 3A (IPC-2000) digital potensiostat. Potentiodynamic anodic polarization was performed at a scan rate of 1 mV/s. The initial polarization potential was –800 mV (SHE). The potential scanning direction was reversed at a «critical» current density icr = 10 mA/cm2 with the same scan rate of polarization. The tendency of the alloy for pitting formation was determined by the Qdir/Qrev ratio (the amounts of electricity passed through the electrode before pits occur and before repassivation) and the bases of pitting resistance: difference between the pitting potential (Epit) and the equilibrium potential (Eeq); difference between the repassivation potential (Erep) and the equilibrium potential (Eeq). Corrosion tests of cast aluminum alloys were carried out by holding the samples in a salt spray chamber and in the 3 % NaCl aqueous solution for 700 h. The Olympus GX51 optical microscope was used to assess the morphology of sample surfaces after their holding. It is found that the Al6Ca1Fe and Al6Ca experimental alloys placed in the 3 % NaCl aqueous solution are not susceptible to pitting corrosion as opposed to the AK12M2 industrial alloy and Al1Fe. It is assumed that the higher corrosion resistance of Al6Ca1Fe is due to the entry of Fe into the Al10CaFe2 intermetallide. The intermetallide is not an effective cathode with respect to Fe due to significant negative potentials of Al and Ca. Al6Ca1Fe is a promising alloy for industrial use due to its high casting and mechanical properties that are not inferior to the eutectic silumin alloy and even surpass it in terms of corrosion resistance.

About the Authors

O. V. Volkova
National University of Science and Technology (NUST) «MISIS».
Russian Federation

scientific stuff of the Department «Metallurgy of steel, new production technologies and protection of metals» of the National University of Science and Technology (NUST) «MISIS».

(119049, Russia, Moscow, Leninskii pr., 4). 



A. V. Dub
National University of Science and Technology (NUST) «MISIS».
Russian Federation

 Dr. Sci. (Tech.), prof. of the  Department «Metallurgy of steel, new production technologies and protection of metals» of the National University of Science and Technology (NUST) «MISIS».

Moscow. 



A. G. Rakoch
National University of Science and Technology (NUST) «MISIS».
Russian Federation
Dr. Sci. (Chem.), prof. of the Department «Metallurgy of steel, new production technologies and protection of metals» of the National University of Science and Technology (NUST) «MISIS».

Moscow. 



A. A. Gladkova
National University of Science and Technology (NUST) «MISIS».
Russian Federation
Cand. Sci. (Chem.), associate prof. of the Department «Metallurgy of steel, new production technologies and protection of metals» of the National University of Science and Technology (NUST) «MISIS».

Moscow. 



M. E. Samoshina
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Cand. Sci. (Tech.), senior researcher of the Department «Pressure metal and alloy treatment» of the NUST «MISIS». 

Moscow.



References

1. Kaufman J.G., Rooy L.E. Aluminum alloy castings: properties, processes and applications. Materials park: ASM International, 2004.

2. Zolotorevskii V.S., Belov N.A. Metallovedenie liteinykh alyuminievykh splavov [Material science of casting aluminum alloys]. Moscow: MISIS, 2005.

3. Belov N.A., Savchenko S.V., Belov V.D. Atlas mikrostruktur promyshlennykh siluminov [Atlas of microstructures of industrial silumins]. Moscow: MISIS, 2009.

4. GOST 1583—93. Splavy alyuminievye liteinye [Aluminum casting alloys]. Moscow: Izdatel’stvo standartov, 1993.

5. Sinyavskii V.S., Val’kov V.D., Kalinin V.D. Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. Moscow: Metallurgiya, 1986.

6. Sinyavskii V.S. Zakonomernosti razvitiya pittingovoi korrozii alyuminievykh splavov i ee vzaimosvyaz’ s korroziei pod napryazheniem [Сharacteristics of development of pitting corrosion of aluminum alloys, and its relationship to stress corrosion]. Zashchita metallov. 2001. Vol. 37. No. 5. P. 521—530.

7. Pereira M., Silva J., Acciari H., Codaro E., Hein L. Morphology characterization and kinetics evaluation of pitting corrosion of commercially pure aluminum by digital image analysis. Mater. Sci. Appl. 2012. Vol. 3. P. 287—293. http://dx.doi.org/10.4236/msa.2012.35042.

8. Frankel G.S. Pitting corrosion of metals. J. Electrochem. Soc. 1998. Vol. 145. No 6. P. 2186—2198. DOI: 10.1149/1.1838615.

9. Szklarska-Smmialowska Z. Pitting corrosion of aluminum. Corros. Sci. 1999. Vol. 41. No. 9. P. 1743—1767. DOI: 10.1016/S0010-938X(99)00012-8.

10. McCafferty V. Sequence of steps in the pitting of aluminum by chloride ions. Corros. Sci. 2003. Vol. 45. No. 45. P. 1421—1438. DOI: 10.1016/S0010-938X(02)00231-7.

11. Rao K.S., Rao K.P. Pitting corrosion of heat-treatable aluminium alloys and welds: a review. Trans. Indian Inst. Met. 2004. Vol. 57. No. 6. P. 593—610.

12. Baumgartner M., Käsche H. Aluminium pitting in chloride solutions: morphology and pit growth kinetics. Corros. Sci. 1990. Vol. 31. P. 231—236. DOI: 10.1016/0010-938X(90)90112-I.

13. Codaro E.N., Nakazato R.Z., Horovistiz A.L., Ribeiro L.M.F., Ribeiro R.B., Hein L.R.O. An image processing method for morphology characterization and pitting corrosion evaluation. Mater. Sci. Eng. 2002. Vol. 334. No. 1-2. P. 298— 306. DOI: 10.1016/S0921-5093(01)01892-5.

14. Angal R. Korroziya i zashchita ot korrozii [Corrosion and corrosion protection]. Dolgoprudnyi: Intellekt, 2013.

15. Revie R.W., Uhlig H.H. Corrosion and corrosion control. A John Wiley & Sons Inc. Publication: Copyright, 2008.

16. Punckt C., Bolscher M., Rotermund H.H., Mikhailov A.S., Organ L., Budiansky N. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon. Science. 2004. Vol. 305. No. 5687. P. 1133—1136. DOI: 10.1126/science.1101358.

17. Zhuk N.P. Kurs korrozii i zashchity metallov [Course and corrosion protection of metals]. Moscow: Metallurgiya, 1976.

18. Tomashov N.D., Chernova G.P. Teoriya korrozii i korrozionno-stoikie konstruktsionnye splavy [Theory of corrosion and corrosion-resistant constructural alloys]. Moscow: Metallurgiya, 1986.

19. Kaesche H. Die korrosion der metalle. Physikalisch-chemische prinzipien und aktuelle probleme. Springer-Verlag, 2011. DOI: 10.1007/978-3-64218428-4.

20. Belov N.A., Naumova E.A., Akopyan T.K. Evtekticheskie splavy na osnove alyuminiya: novye sistemy legirovaniya [Eutectic alloys based on aluminum, new alloying system]. Moscow: Izdatel’skii dom «Ruda i metally», 2016.

21. GOST 9.912-89. ESZKS. Stali i splavy korrozionno-stoikie. Metody uskorennykh ispytanii na stoikost’ k pittingovoi korrozii [Corrosion-resistant steels and alloys. Methods of accelerated tests for resistance to the pitting corrosion]. Moscow: Izdatel’stvo standartov, 1993. 22. Rozenfel’d I.L. Korroziya i zashchita metallov [Corrosion and protection of metals]. Moscow: Metallurgiya, 1969.


Review

For citations:


Volkova O.V., Dub A.V., Rakoch A.G., Gladkova A.A., Samoshina M.E. COMPARISON OF PITTING CORROSION TENDENCY FOR CASTINGS MADE OF AL6CA, AL1FE, AL6CA1FE EXPERIMENTAL ALLOYS AND AK12M2 INDUSTRIAL ALLOY. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):75-81. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-75-81

Views: 973


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)