Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

STRUCTURE PECULIARITIES OF AL–HF–SC MASTER ALLOYS

https://doi.org/10.17073/0021-3438-2017-5-69-74

Abstract

The microstructure peculiarities of the new Al–Hf–Sc master alloys were studied using the methods of optical and scanning electronic (SEM) microscopy in combination with EDX analysis. The alloys studied included the meta-stable intermetallic compounds (aluminides) having cubic lattices identical to those in the matrix of aluminum alloys. Binary and ternary alloys were melted in graphite crucibles at a carbon-resistance furnace under an argon atmosphere. Al–0,96at.%Hf (5,98 wt.% Hf) and Al–0,59at.%Hf (3,77 wt.% Hf) alloys were prepared by superheating above the melting point up to about 200 and 400 degrees respectively. Melts were poured into a bronze casting form where crystallization rate was ~103 degrees/sec. Besides stable aluminides with tetragonal lattices, Al3Hf metastable aluminides with cubic lattices were formed only in the melt superheated by 400 degrees above the melting point. The degree of superheat for ternary alloys where Aln(Hf1–xScx) meta-stable aluminides were formed was 240, 270 and 370 degrees. The hafnium fraction in the Aln(Hf1–xScx) aluminides changed from 0,46 to 0,71 depending on the Hf : Sc ratio in the alloy. The master alloys produced (at.%): Al–0,26Hf–0,29Sc and Al–0,11Hf–0,25Sc (wt.%: Al–1,70Hf–0,47Sc and Al–0,75Hf–0,42Sc) demonstrate fine grain structures with meta-stable aluminides of Aln(Hf0,58Sc0,42) and Aln(Hf0,46Sc0,54) compositions respectively. Aluminide sizes are less than 12 and 7 μm. Their crystal lattice mismatch with the aluminum alloy matrix lattice is less than for Al3Sc. This fact allows us to expect high modifying effects of the experimental Al–Hf–Sc master alloys in their further application. In addition, replacement of expensive scandium with hafnium in the master alloys can reduce scandium consumption considerably.

About the Authors

E. A. Popova
Institute of Metallurgy (IMET), Urals Branch (UB) of RAS.
Russian Federation

 Cand. Sci. (Tech.), senior researcher, Laboratory of the physical chemistry of metallic melts, Institute of Metallurgy (IMET), Urals Branch (UB) of RAS.

(620016, Russia, Ekaterinburg, Amundsen str., 101). 



P. V. Kotenkov
Institute of Metallurgy (IMET), Urals Branch (UB) of RAS.
Russian Federation

 Cand. Sci. (Chem.), researcher, Laboratory of the physical chemistry of metallic melts, IMET UB RAS. 

Ekaterinburg.



A. B. Shubin
Institute of Metallurgy (IMET), Urals Branch (UB) of RAS.
Russian Federation

 Dr. Sci. (Chem.), head of Laboratory of the physical chemistry of metallic melts, IMET UB RAS. 

Ekaterinburg.



E. A. Pastukhov
Institute of Metallurgy (IMET), Urals Branch (UB) of RAS.
Russian Federation

 Corresponding Member of RAS, Dr. Sci. (Chem.), chief researcher, Laboratory of the physical chemistry of metallic melts, IMET UB RAS. 

Ekaterinburg.



References

1. Hyde K.B., Norman A.F., Prangnell P.B. The effect of Ti on grain refinement in Al—Sc alloys. Mater. Sci. Forum. 2002. Vols. 396—402. P. 39—44.

2. Min Song, Yuehui He, Shanfeng Fang. Effect of Zr content on the yield strength of an Al—Sc alloys. J. Mater. Eng. Perform. 2011. Vol. 20. No. 3. P. 377—381.

3. Dalen M.E., Dunand D.C., Seidman D.N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al—Sc alloys. Acta Mater. 2005. Vol. 53. No. 15. P. 4225—4235.

4. Royset J., Ryum N. Scandium in aluminium alloys. Int. Mater. Rev. 2005. Vol. 50. No. 1. P. 19—44.

5. Zakharov V.V. O sovmestnom legirovanii alyuminievykh splavov skandiem i tsirkoniem [Combined alloying of aluminum alloys with scandium and zirconium]. Metallovedenie i termicheskaya obrabotka metallov. 2014. No. 6 (708). P. 3—8; Metal Sci. Heat Treatment. 2014. Vol. 56. No. 5. P. 281—286.

6. Zakharov V.V. O legirovanii alyuminievykh splavov perehodnymi metallami [About alloying of aluminum alloys with transition metals]. Metallovedenie i termicheskaya obrabotka metallov. 2017. No. 2 (740). P. 3—8.

7. Norman A.F., Prangnell P.B., McEwen R.S. The solidification behavior of dilute aluminium—scandium alloys. Acta Mater. 1998. Vol. 46. No. 16. P. 5715—5732.

8. Marquis E.A., Seidman D.N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater. 2001. Vol. 49. P. 1909—1919.

9. Fuller C.B., Murray J.L., Seidman D.N. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I. Chemical compositions of Al3(Sc1–xZrx) precipitates. Acta Mater. 2005. Vol. 53. No. 20. P. 5401—5413.

10. Knipling K.E., Karnesky R.A., Lee C.P., Dunand D.C., Seidman D.N. Precipitation evolution in Al—0,1Sc, Al—0,1Zr and Al—0,1Sc—0,1Zr (at.%) alloys during isochronal aging. Acta Mater. 2010. Vol. 58. P. 5184—5195.

11. Carlsson A.E., Meschter P.J. Relative stability of L12, D022, and D023 structures in MAl3 compounds. J. Mater. Res. 1989. Vol. 4. No. 5. P. 1060—1063.

12. Ghosh G., Asta M. First-principles calculation of structural energetics of Al—TM (TM = Ti, Zr, Hf) intermetallics. Acta Mater. 2005. Vol. 53. P. 3225—3252.

13. Harada Y., Dunand D.C. Microstructure of Al3Sc with ternary transition-metal additions. Mater. Sci. Eng. A. 2002. Vol. 329—331. P. 686—695.

14. Brodova I.G., Zamyatin V.M., Popel P.S., Esin V.O., Baum B.A., Moiseev A.I., Korshunov I.P., Polents I.V. Usloviya formirovaniya metastabil’nykh faz pri kristallizatsii splavov Al—Zr [The conditions for the formation of metastable phases during the crystallization of Al—Zr alloys]. Rasplavy. 1988. Vol. 2. Iss. 6. P. 23—27.

15. Brodova I.G. Polents I.V., Esin V.O., Lobov B.M. Zakonomernosti formirovaniya litoi struktury pereokhlazhdennykh Al—Ti splavov [The formation patterns of the cast structure of supercooled Al—Ti alloys]. Fizika metallov i metallovedenie. 1992. No. 1. P. 84—89.

16. Norman A.F., Tsakiropoulos P. Rapid solidification of Al— Hf alloys — solidification, microstructures and decomposition of solid-solutions. Int. J. Rapid Solid. 1991. Vol. 6. No. 3—4. P. 185—213.

17. Malek P., Janecek M., Smola B., Bartuska P., Plestil J. Structure and properties of rapidly solidified Al—Zr—Ti alloys. J. Mater. Sci. 2000. Vol. 35. P. 2625—2633.

18. Popova E.A., Shubin A.B., Kotenkov P.V., Pastukhov E.A., Bodrova L.E., Fedorova O.M. Al—Ti—Zr master alloys: structure formation. Rus. metallurgy (Metally). Vol. 2012. No. 5. P. 357—361.

19. Popova E.A., Kotenkov P.V., Pastukhov E.A., Shubin A.B. Master alloys Al—Sc—Zr, Al—Sc—Ti, and Al—Ti—Zr: their manufacture, composition, and structure. Rus. Metallurgy (Metally). Vol. 2013. No. 8. P. 590—594.

20. Popova E.A., Kotenkov P.V., Pastukhov E.A. Synergetic effect in modifying with master alloys having an aluminide cubic structure. Rus. Metallurgy (Metally). Vol. 2016. No. 2. P. 189—193.

21. Kotenkov P.V., Popova E.A., Pastukhov E.A. Otsenka modifitsiruyushchei sposobnosti opytnykh ligatur Al—Sc—Zr, Al—Sc—Ti, Al—Ti—Zr [Modifying ability estimation of master alloys Al—Sc—Zr, Al—Sc—Ti, Al—Ti—Zr]. Rasplavy. 2014. No. 4. P. 21—27.

22. Murray J.L., McAlister A.J., Kahan D.J. The Al—Hf (aluminum-hafnium) system. J. Phase Equil. 1998. Vol. 19. No 4. P. 376—379.

23. Murray J.L. The Al—Sc (aluminum-scandium) system. J. Phase Equil. 1998. Vol. 19. No 4. P. 380—384.

24. Kerr H.W., Cisse J., Boiling G.F. On equilibrium and nonequilibrium peritectic transformation. Acta Metall. 1974. Vol. 22. P. 77—686.


Review

For citations:


Popova E.A., Kotenkov P.V., Shubin A.B., Pastukhov E.A. STRUCTURE PECULIARITIES OF AL–HF–SC MASTER ALLOYS. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):69-74. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-69-74

Views: 703


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)