EFFECT OF DISPERSED PHASE COMPOSITION AND DISTRIBUTION AFTER AGING ON FORMABILITY OF D16 ALUMINIUM ALLOY SHEETS
https://doi.org/10.17073/0021-3438-2017-5-60-68
Abstract
About the Authors
F. V. GrechnikovRussian Federation
Dr. Sci. (Tech.), academician of the RAS, head of Department of metal forming, Samara University.
(443086, Russia, Samara, Moskovskoe shosse, 34).
E. A. Nosova
Russian Federation
Cand. Sci. (Tech.), associate prof., Department of metal technology and aviation material science, Samara University.
Samara.
References
1. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s AIRBUS i TU DELFT [Layer aluminium glass plastics SIAL-1441 and collaboration with AIRBUS and TU DELFT]. Tsvetnye metally. 2013. No. 9 (849). P. 50—53.
2. Kotik H.G., Perez Ipiña J.E. Short-beam shear fatigue behavior of fiber metal laminate (Glare). Int. J. Fatigue. 2017. Vol. 95. Р. 236—242.
3. Grechnikov F.V., Antipov V.V., Erisov Ya.A., Grechnikova A.F. Povyshenie tekhnologichnosti alyumostekloplastikov putem formirovaniya v listakh iz splava V95 effectivnoi kristallograficheskoi tekstury [Aluminium-glass plastic technological ability increasing via formation in alloy V95 sheets of effective crystallographic texture]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2014. No. 6. P. 38—43.
4. Postnov A.V., Postnov V.I., Kazakov I.A. Osobennosti tekhnologii formovaniya profil’nykh konstruktsii iz metallopolimernykh kompozitsionnykh materialov [Features of profile constructions forming from metal-polymer composite materials]. Izvestiya Samarskogo nauchnogo tsentra RAN. 2009. Vol. 11. No. 3 (2). P. 499—508.
5. Bikakis G.S.E., Savaidis A. FEM simulation of simply supported GLARE plates under lateral indentation loading and unloading. Theor. Appl. Fracture Mech. 2016. Vol. 83. P. 2—10.
6. Biswas A., Siegel D.J., Seidman D.N. Compositional evolution of Q-phase precipitates in an aluminum alloy. Acta Mater. 2014. No. 75. P. 322—336.
7. Cheng S., Zhao Y.H., Zhu Y.T., Ma E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007. No. 55. P. 5822— 5832
8. Zhong H., Rometsch P.A., Cao L., Estrin Yu. The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys. Mater. Sci. Eng. A. 2016. No. 651. P. 688—697.
9. Xu X., Zhao Yu., Ma B., Zhang J., Zhang M. Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing. Mater. Sci. Eng. A. 2014. No. 612. P. 223—226.
10. Rudskoi A.I., Kolbasnikov N.G., Ringinen D.A. Poluchenie submikronnoi i nanokristallicheskoi struktury metallov metodami goryachei i teploi deformatsii [Receiving of submicron and nanocrystalline structure by hot and warm deformation methods]. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2011. No. 123. P. 191—205.
11. Kolbasnikov N.G., Kondrat’ev S.Yu. Struktura. Entropiya. Fazovye prevrashcheniya i svoistva metallov [Structure. Entropy. Phase transformation and properties of metals]. Sankt-Peterburg: Sankt-Peterburgskii gos. politekhnicheskii universitet, 2006.
12. Yi G., Littrell K.C., Poplawsky J.D., Cullen D.A., Sundberg E., Free M.L. Characterization of the effects of different tempers and aging temperatures on the precipitation behavior of Al—Mg (5.25 at.%)—Mn alloys. Mater. Design. 2017. Vol. 118. P. 22—35.
13. Mal’tsev M.V. Metallografiya promyshlennykh tsvetnykh metallov i splavov [Metallography of non-ferrous metals and alloys]. Moscow: Metallurgiya, 1970.
14. Kolachev B.A., Livanov V.A., Elagin V.I. Metallovedenie i termicheskaya obrabotka tsvethykh metallov i splavov [Metal science and heat treatment of non-ferrous metals and alloys]. Moscow: Metallurgiya, 2001.
15. Cochard A., Zhu K., Joulié S., Douin J., Huez J., Robbiola L., Sciau P., Brunet M. Natural aging on Al—Cu—Mg structural hardening alloys — investigation of two historical duralumins for aeronautics. Mater. Sci. Eng. A. 2017. Vol. 690. P. 259—269.
16. Abúndez A., Pereyra I., Campillo B., Serna S., Alcudia E., Molina A., Blanco A., Mayén J. Improvement of ultimate tensile strength by artificial ageing and retrogression treatment of aluminium alloy 6061. Mater. Sci. Eng. A. 2016. Vol. 668. P. 201—207
17. Lia X.M., Starink M.J. Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al—Zn—Mg—Cu alloys. J. Alloys Compd. 2011. Vol. 509. No. 2. P. 471—476.
18. Lu Ya., Wang J., Li X., Chen Y., Zhou D., Zhou G., Xu W. Effect of pre-deformation on the microstructures and properties of 2219 aluminum alloy during aging treatment. J. Alloys Compd. 2017. Vol. 699. P. 1140—1145.
19. Strobel K., Lay M.D.H., Easton M.A., Sweet L., Zhu S., Parson N.C., Hill A.J. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060. Mater. Charact. 2016. Vol. 111. P. 43—52.
20. Hannard F., Pardoen T., Maire E., Bourlot C. Le, Mokso R., Simar A. Characterization and micromechanical modelling of microstructural heterogeneity effects on ductile fracture of 6xxx aluminium alloys. Acta Mater. 2016. Vol. 103. P. 558—572.
21. Song Y.F., Ding X.F., Xiao L.R., Zhao X.J., Cai Z.Y., Guo L., Li Y.W., Zheng Z.Z. Effects of two-stage aging on the dimensional stability of Al—Cu—Mg alloy. J. Alloys Compd. 2017. Vol. 701. P. 508—514.
Review
For citations:
Grechnikov F.V., Nosova E.A. EFFECT OF DISPERSED PHASE COMPOSITION AND DISTRIBUTION AFTER AGING ON FORMABILITY OF D16 ALUMINIUM ALLOY SHEETS. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):60-68. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-60-68