Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

THERMODYNAMIC ANALYSIS OF ZINC FERRITE DECOMPOSITION IN ELECTRIC ARC FURNACE DUST BY LIME

https://doi.org/10.17073/0021-3438-2017-5-28-33

Abstract

The paper studies the scientific basis of the pyrometallurgical treatment process for electric steelmaking dust containing zinc ferrites. Thermodynamic analysis of zinc ferrite decomposition by lime was performed. According to the calculated data analysis, dust requires adding at least 46 % of CaO to decompose more than 90 % of ZnFe2O4, and at least 60 % of CaO to decompose more than 95 % of ZnFe2O4. The calculation results were verified by the laboratory furnace experiments. Experimental dust calcination in air with lime added up to 60 % of dust mass at a temperature of 1000 °C and a holding time of 4 h confirmed that zinc ferrite is decomposed by calcium oxide with the formation of zinc oxide and dicalcium ferrite. In addition, 50 kg of sublimates per 1 ton of dust were obtained containing 29 % of lead and 15 % of zinc. Dust calcination with the addition of lime can be used to transform zinc from ferrite to a soluble oxide form. Intermediate products resulting from calcination can be used for zinc and lead recovery. After zinc leaching it is possible to obtain the iron-containing product applicable in ferrous metallurgy. The approach has a variety of technological advantages in comparison with the known Waelz process. In particular, calcination with lime requires lower temperature (1000 °C) than the known technology (1250 °C), it eliminates the second stage of Waelz treatment necessary to purify zinc oxide fed for leaching from halides, significantly reduces coke consumption and simplifies gas cleaning from dust due to the 6–8 times lower quantity of sublimates.

About the Authors

S. A. Yakornov
LLC «UGMK-Holding».
Russian Federation

 Cand. Sci. (Tech.), deputy chief technology officer of LLC «UGMK-Holding».

(624091, Russia, Sverdlovsk region, Verkhnyaya Pyshma, Uspenskii pr., 1). 



A. M. Pan’shin
LLC «UGMK-Holding».
Russian Federation

 Dr. Sci. (Tech.), chief technology officer of LLC «UGMK-Holding». 

Verkhnyaya Pyshma.



P. I. Grudinsky
Institute of Metallurgy and Materials Science n.a. A.A. Baikov (IMET RAS) of Russian Academy of Sciences.
Russian Federation

junior research scientist of physicochemistry and technology of iron ore raw materials processing Department of Institute of Metallurgy and Materials Science n.a. A.A. Baikov (IMET RAS) of Russian Academy of Sciences.

(119334, Russia, Moscow, Leninskii pr., 49). 



V. G. Dyubanov
Institute of Metallurgy and Materials Science n.a. A.A. Baikov (IMET RAS) of Russian Academy of Sciences.
Russian Federation

 Cand. Sci. (Tech.), leading research scientist, chief of physicochemistry and technology of iron ore raw materials processing Department of IMET RAS. 

Moscow.



L. I. Leont’ev
Institute of Metallurgy and Materials Science n.a. A.A. Baikov (IMET RAS) of Russian Academy of Sciences.
Russian Federation

Academician of RAS, сhief research scientist of physicochemistry and technology of iron ore raw materials processing Department of IMET RAS.

Moscow.



P. A. Kozlov
JSC «Chelyabinsk Zinc Plant».
Russian Federation

Dr. Sci. (Tech.), prof., adviser to chief technology officer of LLC «UGMK-Holding», deputy director of research of NIPI TU UGMK, chief of Engineering Centre of JSC «Chelyabinsk Zinc Plant».

 (454008, Russia, Chelyabinsk, Sverdlovskii trakt str., 24). 



D. A. Ivakin
JSC «Chelyabinsk Zinc Plant».
Russian Federation

Cand. Sci. (Tech.), chief of technological office of Engineering Centre of JSC «Chelyabinsk Zinc Plant». 

Chelyabinsk



References

1. Maccagni M.G. INDUTEC®/EZINEX® integrate process on secondary zinc-bearing materials. J. Sustain. Metall. 2016. Vol. 2. P. 133—140. DOI: 10.1007/s40831016-0041-0.

2. Roth J.L., Frieden R., Hansmann T., Monai J., Solvi M. PRIMUS, a new process for recycling by-products and producing virgin iron. Rev. Metall. 2001. Vol. 98. No. 11. P. 987—996. DOI: 10.1051/metal:2001140.

3. Verscheure K., Van Camp M., Blanpain B., Wollants P., Hayes P., Jak E. Continuous fuming of zinc-bearing residues. Part II. The submerged-plasma zinc-fuming process. Metall. Trans. B. 2007. Vol. 38B. P. 21—33. DOI: 10.1007/s11663-006-9010-5.

4. Tateishi M., Fujimoto H., Harada T., Sugitatsu H. Development of EAF dust recycling and melting technology using the coal-based FASTMELT® process. URL: http://midrex.com/assets/user/media/Development_of_EAF_Dust_Recycling.pdf (accessed: 03.04.2017).

5. Nakayama M. New EAF dust treatment process: ESRF. URL: http://steelplantech.com/wp-content/ uploads/2013/11/201105_EAF_DustTreatment_ byNewProcess.pdf (accessed: 03.04.2017).

6. Grieshaber K.W., Philipp C.T., Bennett G.F. Process for recycling spent potliner and electric arc furnace dust into commercial products using oxygen enrichment. Waste Management. 1994. Vol. 14. No. 3—4. P. 267—276. DOI: 10.1016/0956-053X(94)90072-8.

7. Amer S., Figueiredo J.M., Luis A. The recovery of zinc from the leach liquors of the CENIM-LENTI process by solvent extraction with di(-2-ethylhexyl) phosphoric acid. Hydrometallurgy. 1995. Vol. 37. No. 3. P. 323—337. DOI: 10.1016/0304-386X(94)00040-A.

8. Bratina J.E., Lenti K.M. PIZO furnace demonstration operation for processing of EAF Dust. URL: http:// pizotech.com/AISI%20May%2007.doc (accessed: 03.04.2017).

9. Youcai Z., Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J. Hazard. Mater. 2000. Vol. 80. Iss. 1—3 P. 223—240. DOI: 10.1016/S03043894(00)00305-8.

10. Shawabkeh R.A. Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust. Hydrometallurgy. 2010. Vol. 104. P. 61—65. DOI: 10.1016/j.hydromet.2010.04.014.

11. Dutra A., Paiva P., Tavares L. Alkaline leaching of zinc from electric arc furnace steel dust. Miner. Eng. 2006. Vol. 19. P. 478—485. DOI: 10.1016/j.mineng.2005.08.013.

12. Cruells M., Roca A., Nunez C. Electric arc furnace flue dusts: characterization and leaching with sulphuric acid. Hydrometallurgy. 1992. Vol. 31. No 3. P. 213—231. DOI: 10.1016/0304-386X(92)90119-K.

13. Lenz D.M., Martins F.B. Lead and zinc selective precipitation from leach electric arc furnace dust solutions. Matéria (Rio de Janeiro). 2007. Vol. 12. No. 3. P. 503— 509. DOI: 10.1590/S1517-70762007000300011.

14. Ruiz O., Clemente C., Alonso M., Alguacil F.J. Recycling of an electric arc furnace flue dust to obtain high grade ZnO. J. Hazard. Mater. 2007. Vol. 141. P. 33—36. DOI: 10.1016/j.jhazmat.2006.06.079.

15. Kazanbaev L.A., Kozlov P.A., Kubasov V.L., Kolesnikov A.V. Gidrometallurgiya tsinka (ochistka rastvorov i elektroliz) [Zinc hydrometallurgy (solution purification and electrowinning)]. Moscow: Ruda i Metally, 2006.

16. Kozlov P.A. The Waelz Process. Moscow: Ore and metals publishing house, 2003.

17. Holloway P.C., Etsell T.H. Recovery of zinc, gallium and indium from La Oroya zinc ferrite using Na2CO3 roasting. Trans. Inst. Min. Metall. Sect. C. Miner. Process. Extr. Metall. 2008. Vol. 117. No. 7. P. 137—146. DOI: 10.1179/174328508X283478.

18. Wu C.C., Chang F.C., Chen W.S., Tsai M.S., Wang Y.N. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent. J. Environ. Manage. 2014. Vol. 143. P. 208—213. DOI: 10.1016/j.jenvman.2014.04.005.

19. Zhang Y., Yu X., Li X. Zinc recovery from franklinite by sulphation roasting. Hydrometallurgy. 2011. Vol. 109. P. 211—214. DOI: 10.1016/j.hydromet.2011.07.002.

20. Ageenkov V.G., Toropova T.G. K voprosu o ferritizatsii tsinka [The question of zinc ferritization]. Tsvetnye metally. 1956. No. 5. P. 50—54.

21. Sergeev G.I., Lykasov A.A., Khudyakov I.F., Guseva O.A., Gorbashov V.V. O povyshenii izvlecheniya kadmiya pri obzhige tsinkovykh kontsentratov s dobavkoi oksida kal’tsiya [Increasing cadmium extraction during roasting of zinc concentrates with calcium oxide addition]. Tsvetnye metally. 1983. No. 2. P. 24—26.

22. Roine A. Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Pori: Outokumpu Research OY, 2002.


Review

For citations:


Yakornov S.A., Pan’shin A.M., Grudinsky P.I., Dyubanov V.G., Leont’ev L.I., Kozlov P.A., Ivakin D.A. THERMODYNAMIC ANALYSIS OF ZINC FERRITE DECOMPOSITION IN ELECTRIC ARC FURNACE DUST BY LIME. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):28-33. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-28-33

Views: 1022


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)