Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

PHASE EQUILIBRIA IN CU–AL–CR–O SYSTEM LIQUID METAL

https://doi.org/10.17073/0021-3438-2017-5-19-27

Abstract

A thermodynamic analysis of phase equilibria in a Cu–Al–Cr–O system was performed. The study involved thermodynamic modeling of the liquidus surface of the Cu2O–Al2O3–Cr2O3 oxide phase diagram. To describe the thermodynamic activity of the molten oxide, an approximation of the sub-regular ionic solutions theory was used with the energy parameters determined in the modeling process. Melting characteristics of CuCrO2 were also evaluated during calculations. Calculation results were used to determine the coordinates of invariant equilibria points in the Cu2O–Al2O3–Cr2O3 ternary oxide system. The study also involved thermodynamic modeling of interactions in the Cu–Al–Cr–O system in the conditions of a copper-based metal melt. The temperature function of the reaction equilibrium constant was determined for the formation of solid CuCrO2 from the components of the Cu–Al–Cr–O molten metal system. The temperature function was obtained for the first order (Wagner’s) interaction parameter of Cr and O dissolved in liquid copper. The results of thermodynamic modeling for the Cu–Al–Cr–O system are represented as the surface of components solubility in metal, which allows us to relate the quantitative changes in the molten metal concentration to the qualitative changes in the composition of resulting reaction products. As a result of modeling, it was found that the given considerable concentrations of Al and Cr in the Cu–Al–Cr–O molten copper system form the |Al2O3, Cr2O3|ss solid solution particles as primary reaction products. The results of the study may be used to improve the chromium bronze smelting process.

About the Authors

O. V. Samoilova
South Ural State University (National Research University) (SUSU (NRU)).
Russian Federation

Cand. Sci. (Chem.), engineer of the Department of materials science and physics and chemistry of materials (MSPCM), research scientist of the Management of science and innovation, South Ural State University (National Research University) (SUSU (NRU)).

(454080, Russia, Chelyabinsk, Lenin av., 76). 



L. A. Makrovets
South Ural State University (National Research University) (SUSU (NRU)).
Russian Federation

engineer of the Department of MSPCM, SUSU (NRU). 

Chelyabinsk.



G. G. Mikhailov
South Ural State University (National Research University) (SUSU (NRU)).
Russian Federation

 Dr. Sci. (Tech.), prof., head of the Department of MSPCM, SUSU (NRU). 

Chelyabinsk.



References

1. Osintsev O.E., Fedorov V.N. Med’ i mednye splavy. Otechestvennye i zarubezhnye marki [Copper and copper alloys. Domestic and foreign brands]. Moscow: Mashinostroenie, 2004.

2. Barmak K., Cabral Jr. C., Rodbell K.P., Harper J.M.E. On the use of alloying elements for Cu interconnect applications. J. Vac. Sci. Technol. B. 2006. No. 24. P. 2485—2498. DOI: 10.1116/1.2357744.

3. Watanabe Ch., Monzen R., Tazaki K. Mechanical properties of Cu—Cr system alloys with and without Zr and Ag. J. Mater. Sci. 2008. No. 43 (3). P. 813—819. DOI: 10.1007/ s10853-007-2159-8.

4. Islamgaliev R.K., Nesterov K.M., Bourgon J., Champion Y., Valiev R.Z. Nanostructured Cu—Cr alloy with high strength and electrical conductivity. J. Appl. Phys. 2014. No. 115. P. 194301—194301-4. DOI: 10.1063/1. 4874655.

5. Mysik R.K., Brusnitsyn S.V., Sulitsin A.V., Ivkin M.O., Karpinskiy A.V. Osobennosti proizvodstva litykh zagotovok iz mednykh splavov [Features of copper alloys cast bars production]. Vestnik YuUrGU. Ser. Metallurgiya. 2014. No. 2. P. 26—34.

6. Dammschröder A., Maurell-Lopez S., Friedrich B. Development of process slags for Cu—Cr-recycling processes. In: Proc. EMC 2009 (Pennsylvania, June 2009). P. 1—16.

7. Kulikov I.S. Raskislenie metallov [Deoxidation of metals]. Moscow: Metallurgiya, 1975.

8. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Termodinamika metallurgicheskikh protsessov i sistem [Thermodynamics of metallurgical processes and systems]. Moscow: MISIS, 2009.

9. Mikhailov G.G., Trofimov E.A., Sidorenko A.Yu. Fazovye ravnovesiya v mnogokomponentnykh sistemakh s zhidkimi tsvetnymi metallami [Phase equilibria in the multicomponent systems with liquid non-ferrous metals]. Moscow: MISIS, 2014.

10. Decterov S.A., Jung I.-H., Jak E., Kang Y.-B., Hayes P., Pelton A.D. Thermodynamic modeling of the Al2O3—CaO— CoO—CrO—Cr2O3—FeO—Fe2O3—MgO—MnO— NiO—SiO2—S system and applications in ferrous process metallurgy. In: VII Intern. Conf. Molten Slags Fluxes & Salts (Johannesburg, Jan. 2004). P. 839—850.

11. Yang Sh., Li J., Zhang L., Peaslee K., Wang Z. Evolution of MgO•Al2O3 based inclusions in alloy steel during the refining process. Metall. Min. Ind. 2010. No. 2 (2). P. 87—92.

12. Samoilova O.V., Makrovets L.A., Mikhailov G.G., Trofimov E.A. Thermodynamic analysis of the Cu—Si—Ni— O system. Russ. J. Non-Ferrous Met. 2012. Vol. 53. No. 3. P. 223—228. DOI: 10.3103/S1067821212030182.

13. Samoylova O.V., Mikhailov G.G., Makrovets L.A., Trofimov E.A., Sidorenko A.Yu. Termodinamicheskoe modelirovanie poverkhnosti likvidus diagrammy sostoyaniya sistemy Cu2O—Al2O3—ZrO2 [Thermodynamic modeling of liquidus surface of the phase diagram of Cu2O—Al2O3—ZrO2 system]. Vestnik YuUrGU. Ser. Metallurgiya. 2015. No. 4. P. 15—21. DOI: 10.14529/ met150402.

14. Khimicheskaya entsiklopediya. Vol. 2 [Chemical encyclopedia. Vol. 2]: Reference book. Ed. I.L. Knunyants. Moscow: Sovetskaya entsiklopediya, 1990.

15. Kubaschewski O., Alcock C.B. Metallurgical thermochemistry. Oxford: Pergamon Press Ltd Publ., 1979.

16. Fiziko-khimicheskie svoistva okislov [Physico-chemical properties of oxides]: Reference book. Ed. G.V. Samsonov. Moscow: Metallurgiya, 1969.

17. Misra S.K., Chaklader A.C.D. The system copper oxide— alumina. J. Amer. Cer. Soc. 1963. No. 46 (10). P. 509.

18. Amrute A.P., Lodziana Z., Mondelli C., Krumeich F., PerezRamirez J. Solid-state chemistry of cuprous delafossites: synthesis and stability aspects. Chem. Mater. 2013. No. 25. P. 4423—4435. DOI: 10.1021/cm402902m.

19. Mudenda S., Kale G.M., Hara Y.R.S. Rapid synthesis and electrical transition in p-type delafossite CuAlO2. J. Mater. Chem. C. 2014. No. 2. P. 9233—9239. DOI: 10.1039/ c4tc01349b.

20. Gadalla A.M.M., White J. The system CuO—Cu2O— Cr2O3 and its bearing on the performance of basic refractories in copper-melting furnaces. Trans. Brit. Ceram. Soc. 1964. No. 63 (10). P. 535—552.

21. Ust’yantsev V.M., Mar’evich V.P., Perepelitsyn V.A. Obrazovanie khromita medi v khromomagnezitovykh ogneuporakh pri sluzhbe v medeplavil’nykh agregatakh [Formation of copper chromite in chromium-magnesite refractories in service in copper-smelting aggregates]. Ogneupory. 1971. No. 10. P. 28—32.

22. Vlach K.C., You Y.-Z., Chang Y.A. A thermodynamic study of the Cu—Cr—O system by the EMF method. Thermochim. Acta. 1986. No. 103 (2). P. 361—370. DOI: 10.1016/0040-6031(86)85173-5.

23. Poienar M., Hardy V., Kundys B., Singh K., Maignan A., Damay F., Martin Ch. Revisiting the properties of delafossite CuCrO2: a single crystal study. J. Solid State Chem. 2012. No. 185. P. 56—61. DOI: 10.1016/j.jssc.2011.10.047.

24. Slag atlas. 2-nd ed. Düsseldorf: Verlag Stahleisen, 1995.

25. Samoilova O.V., Mikhailov G.G., Trofimov E.A., Makrovets L.A. Thermodynamic simulation and an experimental study of the possibility of synthesizing hardened Cu— Zr—O alloys. Russ. Metall. (Metally). 2016. No. 2016 (9). P. 864—868. DOI: 10.1134/S0036029516090135.

26. Mikhailov G.G., Makrovets L.A., Samoilova O.V. Termodinamicheskoe opisanie fazovykh ravnovesii v sisteme Cu—Al—Zr—O v usloviyakh sushchestvovaniya metallicheskogo rasplava [Thermodynamic description of phase equilibria in the Cu—Al—Zr—O system under the condition of metal melt existence]. Vestnik YuUrGU. Ser. Metallurgiya. 2016. No. 3. P. 11—17. DOI: 10.14529/met160302.

27. Linchevskii B.V. Termodinamika i kinetika vzaimodeistviya gazov s zhidkimi metallami [Thermodynamics and kinetics of interaction between gases and liquid metals]. Moscow: Metallurgiya, 1986.

28. Tanahashi M., Furuta N., Taniguchi T., Yamauchi Ch., Fujisawa T. Standard Gibbs free energy of formation of MnO-saturated MnO•Cr2O3 solid solution at 1873 K. ISIJ Intern. 2003. No. 43 (1). P. 7—13. DOI: 10.2355/isijinternational.43.7.

29. Ponweiser N., Lengauer Ch.L., Richter K.W. Re-investigation of phase equilibria in the system Al—Cu and structural analysis of the high-temperature phase η1–Al1–δCu. Intermetallics. 2011. No. 19. P. 1737—1746. DOI: 10.1016/j. intermet.2011.07.007.

30. Chakrabarti D.J., Laughlin D.E. The Cr—Cu (chromium— copper) system. Bull. Alloy Phase Diagr. 1984. No. 5 (1). P. 59—68.

31. Clavaguera-Mora M.T., Touron J.L., Rodríguez-Viejo J., Clavaguera N. Thermodynamic description of the Cu—O system. J. Alloys Compd. 2004. No. 377. P. 8—16. DOI: 10.1016/j.jallcom.2004.01.031.


Review

For citations:


Samoilova O.V., Makrovets L.A., Mikhailov G.G. PHASE EQUILIBRIA IN CU–AL–CR–O SYSTEM LIQUID METAL. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):19-27. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-19-27

Views: 692


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)