PHASE EQUILIBRIA IN CU–AL–CR–O SYSTEM LIQUID METAL
https://doi.org/10.17073/0021-3438-2017-5-19-27
Abstract
About the Authors
O. V. SamoilovaRussian Federation
Cand. Sci. (Chem.), engineer of the Department of materials science and physics and chemistry of materials (MSPCM), research scientist of the Management of science and innovation, South Ural State University (National Research University) (SUSU (NRU)).
(454080, Russia, Chelyabinsk, Lenin av., 76).
L. A. Makrovets
Russian Federation
engineer of the Department of MSPCM, SUSU (NRU).
Chelyabinsk.
G. G. Mikhailov
Russian Federation
Dr. Sci. (Tech.), prof., head of the Department of MSPCM, SUSU (NRU).
Chelyabinsk.
References
1. Osintsev O.E., Fedorov V.N. Med’ i mednye splavy. Otechestvennye i zarubezhnye marki [Copper and copper alloys. Domestic and foreign brands]. Moscow: Mashinostroenie, 2004.
2. Barmak K., Cabral Jr. C., Rodbell K.P., Harper J.M.E. On the use of alloying elements for Cu interconnect applications. J. Vac. Sci. Technol. B. 2006. No. 24. P. 2485—2498. DOI: 10.1116/1.2357744.
3. Watanabe Ch., Monzen R., Tazaki K. Mechanical properties of Cu—Cr system alloys with and without Zr and Ag. J. Mater. Sci. 2008. No. 43 (3). P. 813—819. DOI: 10.1007/ s10853-007-2159-8.
4. Islamgaliev R.K., Nesterov K.M., Bourgon J., Champion Y., Valiev R.Z. Nanostructured Cu—Cr alloy with high strength and electrical conductivity. J. Appl. Phys. 2014. No. 115. P. 194301—194301-4. DOI: 10.1063/1. 4874655.
5. Mysik R.K., Brusnitsyn S.V., Sulitsin A.V., Ivkin M.O., Karpinskiy A.V. Osobennosti proizvodstva litykh zagotovok iz mednykh splavov [Features of copper alloys cast bars production]. Vestnik YuUrGU. Ser. Metallurgiya. 2014. No. 2. P. 26—34.
6. Dammschröder A., Maurell-Lopez S., Friedrich B. Development of process slags for Cu—Cr-recycling processes. In: Proc. EMC 2009 (Pennsylvania, June 2009). P. 1—16.
7. Kulikov I.S. Raskislenie metallov [Deoxidation of metals]. Moscow: Metallurgiya, 1975.
8. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Termodinamika metallurgicheskikh protsessov i sistem [Thermodynamics of metallurgical processes and systems]. Moscow: MISIS, 2009.
9. Mikhailov G.G., Trofimov E.A., Sidorenko A.Yu. Fazovye ravnovesiya v mnogokomponentnykh sistemakh s zhidkimi tsvetnymi metallami [Phase equilibria in the multicomponent systems with liquid non-ferrous metals]. Moscow: MISIS, 2014.
10. Decterov S.A., Jung I.-H., Jak E., Kang Y.-B., Hayes P., Pelton A.D. Thermodynamic modeling of the Al2O3—CaO— CoO—CrO—Cr2O3—FeO—Fe2O3—MgO—MnO— NiO—SiO2—S system and applications in ferrous process metallurgy. In: VII Intern. Conf. Molten Slags Fluxes & Salts (Johannesburg, Jan. 2004). P. 839—850.
11. Yang Sh., Li J., Zhang L., Peaslee K., Wang Z. Evolution of MgO•Al2O3 based inclusions in alloy steel during the refining process. Metall. Min. Ind. 2010. No. 2 (2). P. 87—92.
12. Samoilova O.V., Makrovets L.A., Mikhailov G.G., Trofimov E.A. Thermodynamic analysis of the Cu—Si—Ni— O system. Russ. J. Non-Ferrous Met. 2012. Vol. 53. No. 3. P. 223—228. DOI: 10.3103/S1067821212030182.
13. Samoylova O.V., Mikhailov G.G., Makrovets L.A., Trofimov E.A., Sidorenko A.Yu. Termodinamicheskoe modelirovanie poverkhnosti likvidus diagrammy sostoyaniya sistemy Cu2O—Al2O3—ZrO2 [Thermodynamic modeling of liquidus surface of the phase diagram of Cu2O—Al2O3—ZrO2 system]. Vestnik YuUrGU. Ser. Metallurgiya. 2015. No. 4. P. 15—21. DOI: 10.14529/ met150402.
14. Khimicheskaya entsiklopediya. Vol. 2 [Chemical encyclopedia. Vol. 2]: Reference book. Ed. I.L. Knunyants. Moscow: Sovetskaya entsiklopediya, 1990.
15. Kubaschewski O., Alcock C.B. Metallurgical thermochemistry. Oxford: Pergamon Press Ltd Publ., 1979.
16. Fiziko-khimicheskie svoistva okislov [Physico-chemical properties of oxides]: Reference book. Ed. G.V. Samsonov. Moscow: Metallurgiya, 1969.
17. Misra S.K., Chaklader A.C.D. The system copper oxide— alumina. J. Amer. Cer. Soc. 1963. No. 46 (10). P. 509.
18. Amrute A.P., Lodziana Z., Mondelli C., Krumeich F., PerezRamirez J. Solid-state chemistry of cuprous delafossites: synthesis and stability aspects. Chem. Mater. 2013. No. 25. P. 4423—4435. DOI: 10.1021/cm402902m.
19. Mudenda S., Kale G.M., Hara Y.R.S. Rapid synthesis and electrical transition in p-type delafossite CuAlO2. J. Mater. Chem. C. 2014. No. 2. P. 9233—9239. DOI: 10.1039/ c4tc01349b.
20. Gadalla A.M.M., White J. The system CuO—Cu2O— Cr2O3 and its bearing on the performance of basic refractories in copper-melting furnaces. Trans. Brit. Ceram. Soc. 1964. No. 63 (10). P. 535—552.
21. Ust’yantsev V.M., Mar’evich V.P., Perepelitsyn V.A. Obrazovanie khromita medi v khromomagnezitovykh ogneuporakh pri sluzhbe v medeplavil’nykh agregatakh [Formation of copper chromite in chromium-magnesite refractories in service in copper-smelting aggregates]. Ogneupory. 1971. No. 10. P. 28—32.
22. Vlach K.C., You Y.-Z., Chang Y.A. A thermodynamic study of the Cu—Cr—O system by the EMF method. Thermochim. Acta. 1986. No. 103 (2). P. 361—370. DOI: 10.1016/0040-6031(86)85173-5.
23. Poienar M., Hardy V., Kundys B., Singh K., Maignan A., Damay F., Martin Ch. Revisiting the properties of delafossite CuCrO2: a single crystal study. J. Solid State Chem. 2012. No. 185. P. 56—61. DOI: 10.1016/j.jssc.2011.10.047.
24. Slag atlas. 2-nd ed. Düsseldorf: Verlag Stahleisen, 1995.
25. Samoilova O.V., Mikhailov G.G., Trofimov E.A., Makrovets L.A. Thermodynamic simulation and an experimental study of the possibility of synthesizing hardened Cu— Zr—O alloys. Russ. Metall. (Metally). 2016. No. 2016 (9). P. 864—868. DOI: 10.1134/S0036029516090135.
26. Mikhailov G.G., Makrovets L.A., Samoilova O.V. Termodinamicheskoe opisanie fazovykh ravnovesii v sisteme Cu—Al—Zr—O v usloviyakh sushchestvovaniya metallicheskogo rasplava [Thermodynamic description of phase equilibria in the Cu—Al—Zr—O system under the condition of metal melt existence]. Vestnik YuUrGU. Ser. Metallurgiya. 2016. No. 3. P. 11—17. DOI: 10.14529/met160302.
27. Linchevskii B.V. Termodinamika i kinetika vzaimodeistviya gazov s zhidkimi metallami [Thermodynamics and kinetics of interaction between gases and liquid metals]. Moscow: Metallurgiya, 1986.
28. Tanahashi M., Furuta N., Taniguchi T., Yamauchi Ch., Fujisawa T. Standard Gibbs free energy of formation of MnO-saturated MnO•Cr2O3 solid solution at 1873 K. ISIJ Intern. 2003. No. 43 (1). P. 7—13. DOI: 10.2355/isijinternational.43.7.
29. Ponweiser N., Lengauer Ch.L., Richter K.W. Re-investigation of phase equilibria in the system Al—Cu and structural analysis of the high-temperature phase η1–Al1–δCu. Intermetallics. 2011. No. 19. P. 1737—1746. DOI: 10.1016/j. intermet.2011.07.007.
30. Chakrabarti D.J., Laughlin D.E. The Cr—Cu (chromium— copper) system. Bull. Alloy Phase Diagr. 1984. No. 5 (1). P. 59—68.
31. Clavaguera-Mora M.T., Touron J.L., Rodríguez-Viejo J., Clavaguera N. Thermodynamic description of the Cu—O system. J. Alloys Compd. 2004. No. 377. P. 8—16. DOI: 10.1016/j.jallcom.2004.01.031.
Review
For citations:
Samoilova O.V., Makrovets L.A., Mikhailov G.G. PHASE EQUILIBRIA IN CU–AL–CR–O SYSTEM LIQUID METAL. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):19-27. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-19-27