Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

ULTRAFINE GRINDING EFFECT ON AUTOCLAVE OXIDATION PROCESS PERFORMANCE FOR REFRACTORY GOLD-COPPER-ARSENIC FLOTATION CONCENTRATE

https://doi.org/10.17073/0021-3438-2017-5-13-18

Abstract

The article presents the results of material composition studies of a refractory gold-copper-arsenic concentrate. The nature of gold dissemination in the mineral components of the studied flotation concentrate shows that gold is more associated with sulfides and less with iron hydroxides. The results obtained indicate that gold is predominantly small. The process flow scheme is offered for processing of the studied flotation concentrate. It includes the following operations: ultrafine grinding, autoclave oxidation, alkaline atmospheric treatment of autoclave oxidation cake with subsequent sorption cyanidation. The effect of feed size on the behavior of components in autoclave oxidation was studied. This process was investigated using a sulfuric acid solution with a concentration of 50 g/l at the L : S = 2 : 1 ratio, oxygen pressure of 0,8–1,0 MPa, and temperature of 95±10 °C. It was found that the optimal duration of autoclave oxidation is 4 h. High performance was reached when the flotation concentrate was subjected to preliminary ultrafine grinding to –0,020 mm (85 %) Alkaline atmospheric treatment of the solid cake was carried out under the following conditions: L : S = 3 : 1 ratio, CaO feed – 100 g/kg, temperature – 95 °C, duration – 2 h. Fixed residue of autoclave oxidation was subjected to CIL for 8 h at the ratio of L : S = 3 : 1, pH = 9,5÷11,0, NaCN concentration – 1 g/l, coal feed – 5 vol.%. It was found that this technology provides up to 96 % gold recovery.

About the Authors

I. R. Boboev
National University of Science and Technology «MISIS» .
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of non-ferrous metals, National University of Science and Technology «MISIS».

(119049, Moscow, Leninskii pr., 4). 



L. S. Strizhko
National University of Science and Technology «MISIS» .
Russian Federation

 Dr. Sci. (Tech.), prof. 

Moscow.



References

1. Boboev I.R., Strizhko L.S., Bobozoda Sh.B., Gorbunov E.P. Issledovanie sul’fidiruyushchego obzhiga dlya udaleniya mysh’yaka iz skorodita pri pererabotke upornykh okislennykh zolotosoderzhashchikh rud [Research of sulfiding roasting of scorodite arsenic removal during processing of refractory oxidized gold-bearing ores]. Tsvetnye metally. 2015. No. 8. P. 36—40.

2. Boboev I.R., Strizhko L.S., Bobozoda S., Gorbunov E.P. Kinetic investigation of sulfidizing annealing of scorodite in processing of refractory oxidized gold-containing ores. Russ. Metallurgy (Metally). 2016. No. 3. P. 171—173.

3. Strizhko L.S., Bobozoda Sh., Boboev I.R., Berger B.R. Izvlechenie zolota iz zoloto-med’soderzhashchego syr’ya [Extraction of gold from gold-copper raw materials]. Tsvetnye metally. 2014. No. 6. P. 37—41.

4. Boboev I.R., Bobozoda S., Strizhko L.S. leaching stubborn oxidized gold ores that contain copper. Metallurgist. 2016. Vol. 59. P. 959—963.

5. Lauri R., Jari A., Olof F. Pressure oxidation of pyrite-arsenopyrite refractory gold concentrate. Physicochem. Probl. Miner. Process. 2013. Vol. 49. P. 101—109.

6. Bin X., Yongbin Y., Qian L., Tao J., Shiqian L., Guanghui L. The development of an environmentally friendly leaching process of a high C, As and Sb bearing sulfide gold concentrate. Miner. Eng. 2016. Vol. 89. P. 138—147.

7. Weifeng L., Tianzu Y., Duchao Zh., Lin Ch., Younian L. Pretreatment of copper anode slime with alkaline pressure oxidative leaching. Int. J. Miner. Process. 2014. Vol. 128. P. 48—54

8. Emel’yanov Yu.E., Bogorodskii A.V., Balikov S.V., Epiforov A.V. Sopostavitel’naya otsenka variantov pererabotki upornykh sul’fidnykh flotokontsentratov [Comparative evaluation of processing options for persistent sulphide flotation concentrates]. Tsvetnye metally. 2012. No. 8. P. 10—12.

9. Li J., Dabrowski B., Miller J.D., Acar S., Dietrich M., LeVier K.M., Wan R.Y. The influence of pyrite pre-oxidation on gold recovery by cyanidation. Miner. Eng. 2006. Vol. 19. P. 883—895.

10. Karimi P., Abdollahi H., Amini A., Noaparast M., Shafaei S.Z., Habashi F. Cyanidation of gold ores containing copper, silver, lead, arsenic and antimony. Int. J. Miner. Process. 2010. Vol. 95. P. 68—77.

11. Vidy issledovanii [Types of research]. URL: http://www.irgiredmet.ru/activities/index.php?ID=88&SID=42 (accessed: 01.02.2015).

12. Volostnov A.V., Talovskaya A.V. Metody issledovaniya veshchestvennogo sostava prirodnykh ob’ektov [The methods of studying the material composition of narural objects]. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta, 2010.

13. Bokii G.B., Porai-Koshits M.A. Rentgenostrukturnyi analiz [X-ray diffraction analysis]. Vol. I. Moscow: MGU, 1964.

14. Hongbo Zh., Jun W., Lang T., Pan C., Congren Y., Wenqing Q., Guanzhou Q. Roles of oxidants and reductants in bioleaching system of chalcopyrite at normal atmospheric pressure and 45 °C. Int. J. Miner. Process. 2017. Vol. 162. P. 81—91.

15. Wang Z., Tang Y., Zhang Q., Zhou K. Study on the decarburization pretreatment of a microgranular disseminated type carbonaceous gold ore by alkaline hot-press oxidation. Gold. 2014. Vol. 35. No. 3. P. 52—55.

16. Yang Y., Liu S., Xu B., Li Q., Jiang T. Extraction of gold from a low-grade double refractory gold ore using flotation-preoxidation-leaching process. In: Rare Metal Extraction & Processing 2015: Materials of symposium (Orlandо, Florida, USA, 15—19 March 2015). Publ. house: TMS, 2015. P. 53—62.

17. Fleuriault C.M., Andersona C.G., Shuey S. Iron phase control during pressure oxidation at elevated temperature. Miner. Eng. 2016. Vol. 98. P. 161—168. http://www. sciencedirect.com/science/article/pii/ S0892687516302631 - af010.

18. Zakharov B.A., Meretukov M.A. Zoloto: upornye rudy [Gold: burning ores]. Moscow: Ruda i metally, 2013.

19. Asta M.P., Cama J., Ayora C., Acero P., Giudici G. Arsenopyrite dissolution rates in O2-bearing solutions. Chem. Geol. 2010. Vol. 273. P. 272—285.

20. Forest P.W., Madeline E.S., Donald J.R. Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim. Cosmochim. Acta. 2006. Vol. 70. P. 1668—1676.

21. Lin L., Catalina P., Ahmad Gh. Fe(III)/Fe(II) reduction-oxidation mechanism and kinetics studies on pyrite surfaces. J. Electroanal. Chem. 2016. Vol. 774. P. 66—75.

22. Hongbo Zh., Jun W., Xiaowen G., Minghao H., Lang T., Wenqing Q., Guanzhou Q. Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential. Hydrometallurgy. 2016. Vol. 164. P. 159—165.


Review

For citations:


Boboev I.R., Strizhko L.S. ULTRAFINE GRINDING EFFECT ON AUTOCLAVE OXIDATION PROCESS PERFORMANCE FOR REFRACTORY GOLD-COPPER-ARSENIC FLOTATION CONCENTRATE. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):13-18. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-13-18

Views: 759


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)