Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

MAGNETIC FLUID SEPARATION OF ALLUVIAL GOLD FROM PLACER BENEFICIATION PRODUCTS

https://doi.org/10.17073/0021-3438-2017-5-4-12

Abstract

The process of separation in a ferrofluid is recommended for gold separation from placer beneficiation products. The process of magnetic fluid separation is based on the ponderomotive force of the inhomogeneous magnetic field appeared in ferrofluids in addition to the pushing gravity force. The horizontal component of this force in a separation medium participates in the movement of bodies along an equipotential surface across the working area – to the separation cell walls and towards the central plane of the pole gap, and the longitudinal component participates in the movement along the working area. In order to improve the technological parameters of the process, it is recommended to limit the transverse displacements of the bodies by vertical partitions installed in the separation medium along the separator pole gap. The theoretical study results regarding particle motion in the separator working area suggest that the wall effect is manifested in the appearance of a flow opposite to the direction of particle motion. This increases the hydrodynamic drag force and reduces the speed of particle movement. It is shown that the decrease in the time of light concentrate fraction presence in the separator working area with vertical walls promotes an increase in the productivity of the process with respect to the initial feed and heavy fraction productivity (gold extraction into the heavy fraction). The mathematical methods of experimental design were used to perform investigation tests of competing methods of separation on artificial mineral mixtures and heavy gold-bearing concentrates isolated from placer sands. It has been proved that the transition from ferrofluid volume separation to separation using the developed method increases the unit productivity by 9 %, and the gold extraction into the heavy fraction from 84,34 to 91,77 % due to light fraction losses reduced from 15,46 to 7,96 %. Heavy fraction yield lowered by 11,6 rel.% made it possible to obtain a material containing over 800 kg per ton of gold.

About the Authors

S. I. Evdokimov
North Caucasian Institute of Mining and Metallurgу (State Technological University).
Russian Federation

 Cand. Sci. (Tech.), assistant prof. of the Department of mineral processing of the North Caucasian Institute of Mining and Metallurgу (State Technological University).

(362021, Republic of North Ossetia – Alania, Vladikavkaz, Nikolaev str., 44). 



T. E. Gerasimenko
North Caucasian Institute of Mining and Metallurgу (State Technological University).
Russian Federation

 Cand. Sci. (Tech.), head of the Department of intellectual property of the North Caucasian Institute of Mining and Metallurgy (State Technological University). 

Vladikavkaz.



References

1. Kalaeva S.Z. Napravlennoe izmenenie svoistv mineralov i porod tekhnogennykh mestorozhdenii dlya polucheniya magnitnykh zhidkostei, obespechivayushchikh reshenie inzhenernykh zadach dobychi i pererabotki poleznykh iskopaemykh [Directed change of properties of minerals and technogenic deposits of rocks for magnetic fluids, providing the solution of engineering problems of extraction and processing of minerals]: Abstract of the dissertation of PhD (Tech.). Tula: TulGU, 2015.

2. Solodenko A.A. Razvitie teorii i praktiki pererabotki zolotosoderzhashchego syr’ya kombinirovannymi metodami obogashcheniya [Development of theory and practice of processing of gold-bearing raw materials by combined methods of enrichment]: Abstract of the dissertation of PhD (Tech.). Vladikavkaz: SKGMI (GTU), 2016.

3. Pan’shin A.M., Evdokimov S.I., Artemov S.V. Magnitozhidkostnaya separatsiya zolotosoderzhashchikh produktov v vibratsionnom pole [Magneto-liquid separation of gold-containing products in the vibrational field]. Izv. vuzov. Tsvetnaya metallurgiya. 2009. No 6. P. 7—15.

4. Pan’shin A.M., Evdokimov S.I. Primenenie metoda magnitno-zhidkostnoi separatsii pri obogashchenii zolotosoderzhashchikh rossypei [Application of magnetic liquid separation in the beneficiation of gold placer]. Gornyi zhurnal. 2010. No. 1. P. 75—77.

5. Ghazanfari M.R., Kashefi M., Jaafari M.R. Modeling and optimization of effective parameters on the size of synthesized Fe3O4 superparamagnetic nanoparticles by coprecipitation technique using response surface methodology. J. Magn. Magn. Mater. 2016. Vol. 405. P. 88—6.

6. Kishimoto M., Miyamoto R., Oda T., Yavagihara H., Ohkohchi N., Kita E. Magnetic fluid with high dispersion and heating performance using nano-sized Fe3O4 platelets. J. Magn. Magn. Mater. 2016. Vol. 398. P. 200— 204.

7. Sakellari D., Mathioudaki S., Kalpaxisou Z., Simeonidis K., Angelakeris M. Exploring multifunctional potential of commercial ferrofluids by magnetic particle hyperthermia. J. Magn. Magn. Mater. 2015. Vol. 380. P. 360—364.

8. Bahiraei M., Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: A review. J. Magn. Magn. Mater. 2015. Vol. 374. P. 125—138.

9. Evdokimov S.I., Evdokimov V.S. Synthesis of a stable magnetite (magnetic fluid) colloid solution. In: 5th Global Conf. on Materials Science and Engineering. IOP Conf. Series: Materials Science and Engineering. 2017. Vol. 164. P. 4—12.

10. Pshenichnikov A.F., Burkova E.N. O silakh, deistvuyushchikh na postoyannyi magnit, pomeshchennyi v pryamougol’nuyu polost’ s magnitnoi zhidkost’yu [On the forces acting on a permanent magnet, placed in a rectangular cavity with a magnetic fluid]. Vychislitel’naya mekhanika sploshnykh sred. 2014. Vol. 7. No. 1. P. 5—14.

11. Kazakov Yu.B., Stradomskii Yu.I., Filippov V.A. Modelirovanie i issledovanie elektrotekhnicheskoi sistemy reguliruemoi separatsii nemagnitnykh materialov s ispol’zovaniem nanodispersnykh magnitnykh zhidkostei [Modeling and research of the electro-technical system for controlled separation of non-magnetic materials using nanodispersed magnetic fluids]. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2011. Iss. 2. P. 1—4.

12. Evtushenko M.B., Vigdergauz V.E. Izvlechenie melkogo zolota magnitogravitatsionnoi separatsiei v tonkom sloe [Extraction of fine gold by magnetogravitational separation in a thin layer]. Gornyi zhurnal. 2002. No. 8. P. 80—82.

13. Protod’yakonov I.O., Lyublinskaya I.E., Ryzhkov A.E. Gidrodinamika i massoobmen v dispersnykh sistemakh zhidkost’—tverdoe telo [Hydrodynamics and mass transfer in liquid-solid disperse systems]. Leningrad: Khimiya, 1987.

14. Stradomskii Yu.I., Filippov V.A. Analiz geometrii rabochego zazora magnitozhidkostnogo separatora [Analysis of the working gap geometry of the magneto-liquid separator]. In: Sbornik nauchnykh trudov 16 Mezhdunarodnoi Plesskoi nauchnoi konferentsii po nanodispersnym magnitnym zhidkostyam [A collection of scientific papers of the intern. scientific conf. on nanodispersed magnetic fluids]. Ed. Yu.B. Kazakov. Ivanovo: LLC «PresSto», 2014. P. 411—416.

15. Perminov S.M., Perminova A.S. Razrabotka novogo sposoba formirovaniya vysokogradientnykh magnitnykh polei v rabochikh zazorakh magnitozhidkostnykh germetizatorov [Development of a new method for the formation of high-gradient magnetic fields in working gaps of magneto-liquid sealers]. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2013. Iss. 6. P. 56—59.

16. Evdokimov S.I., Solodenko A.A. Teoriya polucheniya magnitnykh zhidkostei i dvizheniya mineral’nykh chastits v separatorakh otklonyayushchego tipa [The theory of obtaining magnetic fluids and the motion of mineral particles in deflecting type separators]. Izvestiya. vuzov. Tsvetnaya metallurgiya. 2006. No. 4. P. 28—34.

17. Aref’ev I.M., Lebedev A.V. Otsenka maksimal’nogo razmera chastits v mag-nitnykh zhidkostyakh [Estimation of the maximum particle size in magnetic liquids]. Kolloidnyi zhurnal. 2016. Vol. 78. No. 2. P. 252—256.

18. Pshenichnikov A.F., Lebedev A.V., Radionov A.V., Efremov D.V. Magnitnaya zhidkost’ dlya raboty v sil’nykh gradientnykh polyakh [Magnetic fluid for work in strong gradient fields]. Kolloidnyi zhurnal. 2015. Vol. 77. No. 2. P. 197—207.

19. Laurent S., Dutz S., Hateli U.O., Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011. Vol. 166. No. 1-2. P. 8-23.

20. Rajput S., Pittman Jr.C.U., Mohan D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci. 2016. Vol. 468. P. 334—346.

21. Drozdov A.S., Ivanovski V., Avnir D., Vinogradov V.V. A universal magnetic ferrofluidinanomagnetite stable hydrosol with no added dispersants and at neutral pH. J. Colloid Interface Sci. 2016. Vol. 468. P. 307—312.


Review

For citations:


Evdokimov S.I., Gerasimenko T.E. MAGNETIC FLUID SEPARATION OF ALLUVIAL GOLD FROM PLACER BENEFICIATION PRODUCTS. Izvestiya. Non-Ferrous Metallurgy. 2017;(5):4-12. (In Russ.) https://doi.org/10.17073/0021-3438-2017-5-4-12

Views: 1133


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)