SIMULATION OF TEMPERATURE FIELD AT THE MOLD SURFACE AND INSIDE THE CASTING AT HIGH-GRADIENT DIRECTIONAL SOLIDIFICATION PROCESS
https://doi.org/10.17073/0021-3438-2017-4-53-61
Abstract
In order to determine the thermal gradient in a single crystal ingots obtained using the directional solidification method on the UVNS-6 apparatus (Russian Scientific Research Institute of Aviation Materials, Moscow), the single crystal ingots of nickel-based superalloy VJM3 were made. The ingots were made using the liquid metal cooling (LMC) directional solidification method (DS) and without it (Bridgman–Stockbarger technique). The liquid Sn was used for a liquid metal cooling technique. To record the temperature during the ingots obtaining process we use a thermocouple placed on the ceramic mold surface. The directional solidification process of the nickel-based superalloy VJM3 ingots on the UVNS-6 apparatus was simulated using the ProCast software. The thermal properties of the VJM3 alloy, ceramic mold and the DS apparatus parts and the boundary conditions (interface heat transfer coefficient) were found in the literature. There is a good agreement between the calculated and experimental values of the temperature distribution in a mold using the LMC and the Bridgman–Stockbarger technique. A simulation of the directional solidification in the ProCast software is suitable for predicting the thermal gradient on a solidification profile location, and the mushy zone width (a site of the dendritic structure formation). The calculated thermal gradient value in the ingot obtained using the Bridgman–Stockbarger technique is 36 °С/cm. The thermal gradient using the LMC method is 204 °С/cm, is six time higher, than if using the Bridgman–Stockbarger technique. Used thermal properties and boundary conditions can be applied for simulation of Ni-based superalloys blades casting process.
About the Authors
Yu. A. BondarenkoRussian Federation
Dr. Sci. (Tech.), Chief research scientist, Superalloys and steels casting technologies laboratory
A. B. Echin
Russian Federation
Cand. Sci. (Tech.), Head of Superalloys and steels casting technologies laboratory
V. E. Bazhenov
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of foundry technologies and material art working (FT&MAW)
A. V. Koltygin
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of foundry technologies and material art working (FT&MAW)
References
1. Bridgman P.W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proc. Amer. Acad. Arts Sci. 1925. Vol. 60. P. 305—383.
2. Stockbarger D.C. The production of large single crystals of lithium fluoride. Rev. Sci. Instr. 1936. Vol. 7. P. 133—136.
3. Gell M., Duhl D.N., Giamei A.F. The development of single crystal superalloy turbine blades. Superalloys. 1980. Vol. 41. P. 205—214.
4. Bondarenko Yu.A. Perspektivy i tekhnologiya napravlennoi kristallizatsii krupnogabaritnykh rabochikh lopatok nazemnykh gazovykh turbin [Perspectives and directional solidification technology of land-based gas turbines rotor blades]. Materialovedenie. 1998. No. 7. P. 21—25.
5. Fan J., Li X., Su Y., Chen R., Guo J., Fu H. Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti— 49Al alloy. Mater. Chem. Phys. 2011. Vol. 130. P. 1232— 1238.
6. Elliott A.J., Pollock T.M., Tin S., King W.T., Huang S.-C., Gigliotti M.F.X. Directional solidification of large super-alloy castings with radiation and liquid-metal cooling: a comparative assessment. Metal. Mater. Trans. A. 2004. Vol. 35 P. 3221—3231.
7. Bingming G., Lin L., Xinbao Z., Taiwen H., Jun Z., Hengzhi F. Effect of directional solidification methods on the cast microstructure and grain orientation of blade shaped DZ125 superalloy. Rare Metal Mater. Eng. 2013 Vol. 42. Iss. 11. P. 2222—2227.
8. Hugo F., Betz U., Ren J., Huang S.-C., Bondarenko J. Casting of directionally solidified and single crystal components using liquid metal cooling (LMC): Results from experimental trials and computer simulations. In: Proc. Int. Symp. on Liquid Metal Processing and Casting. Santa Fe: VMD AVS, 1999. P. 16—30.
9. Brundidge C.L., Miller J.D., Pollock T.M. Development of dendritic structure in the liquid-metal-cooled, directional-solidification process. Metal. Mater. Trans. A. 2011. Vol. 42A. P. 2723—2732.
10. Miller J.D., Pollock T.M. Process Simulation for the directional solidification of a tri-crystal ring segment via the bridgman and liquid-metal-cooling processes. Metal. Mater. Trans. A. 2012. Vol. 43A. P. 2414—2425.
11. Kermanpur A., Mehrara M., Varahram N., Davami P. Improvement of grain structure and mechanical properties of a land based gas turbine blade directionally solidified with liquid metal cooling process. Mater. Sci. Technol. 2008. Vol. 24. Iss. 1. P. 100—106.
12. Monastyrskii V.P., Kondrat’eva M.S. Modelirovanie napravlennoi kristallizatsii otlivok iz nikelevykh zharoprochnykh splavov v ustanovke s vodookhlazhdaemym kristallizatorom [Simulation of nickel superalloys castings directional solidification in the water-cooled mold unit]. Liteishchik Rossii. 2013. No. 1. P. 23-27.
13. Monastyrskii V.P. Modelirovanie mikroporistosti v otlivkakh, zatverdevayushchikh v usloviyakh napravlennogo teplootvoda [Simulation of microporosity in the castings obtained by directional solidification]. Teplovye protsessy v tekhnike. 2011. Vol. 3. No. 1. P. 20—27.
14. Monastyrskii V.P., Rozhkova M.K. Regressionnaya model’ protsessa napravlennoi kristallizatsii otlivok ikh nikelevykh zharoprochnykh splavov v ustanovke UVNK-8P [The regression model of nickel superalloys castings directional solidification in the UVNK-8P unit]. Liteishchik Rossii. 2012. No. 1. P. 22—27.
15. Echin A., Bondarenko Y. Turbine blades production technique equipment built with a glance of high-gradient directional crystallization process nature. MATEC Web of Conferences. 2014. Vol. 14. P. 13001.
16. Caron P. High γ’ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys. 2000. Vol. 2000. P. 737—746.
17. Liu G., Liu L., Ai C., Ge B., Zhang J., Fu H. Influence of withdrawal rate on the microstructure of Ni-base single-crystal superalloys containing Re and Ru. J. Alloys and Compnd. 2011. Vol. 509. P. 5866—5872.
18. Bondarenko Yu.A., Echin A.B. Napravlennaya kristallizatsiya zharoprochnogo splava s peremennym upravlyaemym gradientom [Directional solidification of superalloy with controlled variable gradient]. Voprosy materialovedeniya. 2016. No. 3. P. 50—58.
19. Mal’tseva Yu.Yu., Monastyrskii A.V. Modelirovanie pro-tsessa napravlennoi kristallizatsii otlivok iz zharoprochnykh nikelevykh splavov [Simulation of nickel superalloy casting directional solidification]. CADmaster. 2010. No. 1. P. 36—40.
20. Kablov E.N. Litye lopatki gazoturbinnykh dvigatelei (splavy, tekhnologiya, pokrytiya) [Casting of gas turbine engines blades (alloys, technology, coating)]. Moscow: MISIS, 2001.
21. Echin A.B. Vliyanie temperaturnogo gradienta i skorosti kristallizatsii na strukturu i svoistva monokristallicheskikh Re i Ru soderzhashchikh zharoprochnykh splavov primenitel’no k vysokogradientnoi tekhnologii lit’ya lopatok GTD [Influence of temperature gradient and solidification rate on microstructure and properties of single crystal Re and Ru-containing superalloys in relation to high-gradient gas turbine engine blades casting technology] : Abstr. Diss. of PhD. Moscow: MISIS, 2016.
22. Pikunov M.V. Plavka metallov. Kristallizatsiya splavov. Zatverdevanie otlivok. Uchebnik. [Smelting of metals. Crystallization of alloys. Solidification of castings: Textbook]. Moscow: MISIS, 2005.
23. Zhmurikov E.I., Savchenko I.V., Stankus S.V., Tecchio L. Izmereniya teplofizicheskikh svoistv grafitovykh kompozitov dlya konvertora neitronnoi misheni [Measurements of graphite composites thermal properties used for neutron converter target]. Vestnik NGU. Seriya: Fizika. 2011. Vol. 6. No. 2. P. 77—84.
Review
For citations:
Bondarenko Yu.A., Echin A.B., Bazhenov V.E., Koltygin A.V. SIMULATION OF TEMPERATURE FIELD AT THE MOLD SURFACE AND INSIDE THE CASTING AT HIGH-GRADIENT DIRECTIONAL SOLIDIFICATION PROCESS. Izvestiya. Non-Ferrous Metallurgy. 2017;(4):53-61. (In Russ.) https://doi.org/10.17073/0021-3438-2017-4-53-61