Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

INFLUENCE OF MELTING CONDITIONS OF ALUMINUM ALLOYS ON THE PROPERTIES AND QUALITY OF CASTINGS OBTAINED BY LOST FOAM CASTING

https://doi.org/10.17073/0021-3438-2017-4-39-45

Abstract

The development of modern foundry is characterized by a constant increase of requirements to the quality of the casting, the rational use of material resources, the search for new technical and technological solutions to ensure resource conservation along with obtaining the desired properties of castings. At the same time questions to identify and study the impact of the laws of temperature and time parameters of melting and pouring into the mold of aluminum alloys during lost foam casting on integrity, mechanical and quality parameters of thin-walled castings are poorly understood and difficult to implement, especially in view of resource saving measures. This article examines the influence of casting process parameters on strength, integrity and content of nonmetallic inclusions in AK7 alloy castings of the gas analyzer housing cover obtained by lost-foam casting. The dataset obtained on the basis of experimental research was subjected to statistical analysis. Statistical models allowed us to obtain the effect of time of melt holding and the content of recycled materials in the charge on strength and integrity of the specified castings. The effect of the time of AK7 melt holding at 880–890 °С on the content of nonmetallic inclusions in the castings was studied, and it was shown that the holding time variation allows controlling the nonmetallics content. This reduces melt microinhomogeneity and provides more castings with the minimum content of nonmetallic inclusions.

 

About the Authors

V. B. Deev
National University of Science and Technology «MISIS»
Russian Federation

Dr. Sci. (Tech), Prof., Department of foundry technologies and art processing materials, Chief scientific officer, Engineering Centre «Foundry technologies and materials»



K. V. Ponomareva
Siberian State Industrial University (SibSIU)
Russian Federation

Cand. Sci. (Tech.), Lecturer, Department of material science, foundry and welding production



A. I. Kutsenko
Siberian State Industrial University (SibSIU)
Russian Federation

Cand. Sci. (Tech.), Lecturer, Department of economics and business activities



O. G. Prikhodko
Siberian State Industrial University (SibSIU)
Russian Federation

Cand. Sci. (Tech.), Lecturer, Department of quality management



S. V. Smetanyuk
LLC «Metal NVK»
Russian Federation

Leading engineer



References

1. Jiang W., Li G., Fan Z., Wang L., Liu F. Investigation on the interface characteristics of al/mg bimetallic castings processed by lost foam casting. Metall. Mater. Trans. A. 2016. Vol. 47. No. 5. P. 2462—2470.

2. Тихомирова И.М., Клименок Е.В. Разработка технологии изготовления отливки литьем по газифицируемым моделям // Литье и металлургия. 2013. No. 3S (72). С. 132—137; Tikhomirova M.I., Klimenok E.V.

3. Razrabotka texnologii izgotovleniya otlivki litem po gazificiruemym modelyam [The development of manufacturing technology of castings by casting on gasified models]. Litye i metallurgiya. 2013. No. 3S (72). P. 132— 137.

4. Guler K.A., Kisasoz A., Karaaslan A. A study of expanded polyethylene (EPE) pattern application in aluminium lost foam casting. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 2. P. 171—176.

5. Деев В.Б., Пономарева К.В., Юдин А.С. Исследование плотности пенополистироловых моделей при реализации ресурсосберегающей технологии получения тонкостенного алюминиевого литья // Изв. вузов. Цвет. металлургия. 2015. No. 2. С. 48—51; Deev V.B., Ponomareva K.V., Yudin A.S. Investigation into the density of polystyrene foam models when implementing the resource saving fabrication technology. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 283—286.

6. Нестеров Н.В., Ермилов А.Г. Низкочастотные пульсации расплава при литье по газифицируемым моделям. Ч. 1 // Изв. вузов. Цвет. металлургия. 2011. No. 6. С. 43—47; Nesterov N.V., Ermilov A.G. Low-frequency pulsation of melt during lost foam casting process. Pt. 1. Russ. J. Non-Ferr. Met. 2011. Vol. 52. No. 6. P. 499—503.

7. Нестеров Н.В., Ермилов А.Г. Низкочастотные пульсации расплава при литье по газифицируемым моделям. Ч. 2 // Изв. вузов. Цвет. металлургия. 2012. No. 2. С. 42—46; Nesterov N.V., Ermilov A.G. Low-frequency pulsation of melt during lost foam casting process. Pt. 2. Russ. J. Non-Ferr. Met. 2012. Vol. 53. No. 2. P. 150—154.

8. Исагулов А.З., Куликов В.Ю., Laurent C., Твердохлебов Н.И., Щербакова Е.П. Совершенствование литья по газифицируемым моделям // Литейное пр-во. 2014. No. 4. С. 16—18; Isagulov A.Z., Kulikov V.Y., Laurent C., Tverdokhlebov N.I., Shcherbakova E.P. Sovershenstvovanie litya po gazificiruemym modelyam [The improvement of casting on gasified models]. Liteynoe proizvodstvo. 2014. No. 4. P. 16—18.

9. Griffiths W.D., Ainsworth M.J. Hydrogen pick-up during mould filling in the lost foam casting of Al alloys. J. Mater. Sci. 2012. Vol. 47. No. 1. P. 145—150.

10. Karimian M., Ourdjini A., Idris M.H., Jafari H. Effects of casting parameters on shape replication and surface roughness of LM6 aluminium alloy cast using lost foam process. Trans. Indian Inst. of Metals. 2015. Vol. 68. No. 2. Р. 211—217.

11. Griffiths W.D., Ainsworth M.J. Instability of the liquid metal—pattern interface in the lost foam casting of aluminum alloys. Metal. Mater. Trans. A. 2016. Vol. 47. No. 6. P. 3137—3149.

12. Zhang L., Tan W., Hu H. Determination of the heat transfer coefficient at the metal-sand mold interface of lost foam casting process. Heat and Mass Transfer. 2016. Vol. 52. No. 6. P. 1131—1138.

13. Barone M., Caulk D. Analysis of mold filling in lost foam casting of aluminum: method. Int. J. Metalcasting. 2008. Vol. 2. No. 3. P. 29—45.

14. Wali K.F., Bhavnani S.H., Overfelt R.A., Sheldon D.S., Williams K. Investigation of the performance of an expandable polystyrene injector for use in the lost-foam casting process. Metall. Mater. Trans. B. 2003. Vol. 34. No. 6. P. 843—851.

15. Guler K.A., Kisasoz A., Karaaslan A. Effects of pattern coating and vacuum assistance on porosity of aluminium lost foam castings. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 5. Р. 424—428.

16. Pacyniak T. Effect of refractory coating in the Lost Foam Process. Arch. Foundry Eng. 2009. No. 9(3). Р. 255—260.

17. Sharifi A., Mansouri Hasan Abadi M., Ashiri R. Direct observation of effects of foam density, gating design and pouring temperature on mold filling process in lost foam casting of A356 alloy. In: Proceedings of the TMS middle east — mediterranean materials congress on energy and infrastructure systems. MEMA. 2015. Р. 109—118.

18. Селянин И.Ф., Деев В.Б., Кухаренко А.В. Ресурсо- и экологосберегающие технологии производства вторичных алюминиевых сплавов // Изв. вузов. Цвет. металлургия. 2015. No. 2. С. 20—25; Selyanin I.F., Deev V.B., Kukharenko A.V. Resource-saving and environment-saving production technologies of secondary aluminum alloys. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 272—276.

19. Dispinar D., Campbell J. Porosity, hydrogen and bifilm content in Al alloy castings. Mater. Sci. Eng. 2011. No. 528(10). Р. 3860—3865.

20. Griffiths W.D., Ainsworth M.J. Instability of the liquid metal—pattern interface in the lost foam casting of aluminum alloys. Metal. Mater. Trans. A. 2016. Vol. 47A. Р. 3137—3149.

21. Sands M., Shivkumar S. EPS bead fusion effects on fold defect formation in lost foam casting of aluminum alloys. J. Mater. Sci. 2006. No. 41(8). Р. 2373—2379.

22. Tabibian S., Charkaluk E., Constantinescu A., Szmytka F. Behavior, damage and fatigue life assessment of lost foam casting aluminum alloys under thermo-mechanical fatigue conditions. Proc. Eng. 2010. No. 2(1). Р. 1145—1154.

23. Pacyniak T. The effect of refractory coating permeability on the Lost Foam process. Archiv. Foundry Eng. 2008. No. 8(3). Р. 199—204.

24. Griffiths W.D., Davies P.J. The permeability of Lost Foam pattern coatings for Al alloy castings. J. Mater. Sci. 2008. No. 43(16). Р. 5441—5447.

25. Deev V.B., Selyanin I.F., Ponomareva K.V., Yudin A.S., Tsetsorina S.A. Fast cooling of aluminum alloys in casting with a gasifying core. Steel in Trans. 2014. Vol. 44. No. 4. Р. 253—254.

26. Deev V.B., Selyanin I.F., Kutsenko A.I., Belov N.A., Ponomareva K.V. Promising resource saving technology for processing melts during production of cast aluminum alloys. Metallurgist. 2015. Vol. 58. No. 11-12. P. 1123— 1127.

27. Тен Э.Б., Рахуба Е.М., Киманов Б.М., Жолдубаева Ж.Д. Ресурсы повышения рафинирующего потенциала фильтров для жидких металлов // Литейщик России. 2013. No. 11. С. 38—42; Ten E.B., Raxuba E.M., Kimanov B.M., Zholdubaeva Zh.D. Resursy povysheniya rafiniruyushhego potenciala filtrov dlya zhidkix metallov [Resources increase refining capacity of filters for liquid metal]. Litejshhik Rossii. 2013. No. 11. P. 38—42.

28. Селянин И.Ф., Деев В.Б., Белов Н.А., Приходько О.Г., Пономарева К.В. Физические модифицирующие воздействия и их влияние на кристаллизацию литейных сплавов // Изв. вузов. Цвет. металлургия. 2015. No. 3. С. 56—59; Selyanin I.F., Deev V.B., Belov N.A., Prikhodko O.G., Ponomareva K.V. Physical modifying effects and their influence on the crystallization of casting alloys. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 4. P. 434— 436.

29. Никитин В.И., Никитин К.В. Наследственность в литых сплавах. М: Машиностроение-1, 2005; Nikitin V.I., Nikitin K.V. Nasledstvennost v lityx splavax [Heredity in cast alloys]. Moscow: Mashinostroenie-1, 2005.

30. Никитин К.В., Никитин В.И., Тимошкин И.Ю., Глущенков В.А., Черников Д.Г. Обработка расплавов магнитно-импульсными полями с целью управления структурой и свойствами промышленных силуминов // Изв. вузов. Цвет. металлургия. 2016. No. 2. С. 34—42; Nikitin K.V., Nikitin V.I., Timoshkin, I.Yu., Glushchenkov V.A., Chernikov D.G. Melt treatment by pulsed magnetic fields aimed at controlling the structure and properties of industrial silumins. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 3. P. 202—210.

31. Никитин К.В., Амосов Е.А., Никитин В.И., Глущенков В.А., Черников Д.Г. Теоретическое и экспериментальное обоснование обработки расплавов на основе алюминия импульсными магнитными полями силуминов // Изв. вузов. Цвет. металлургия. 2015. No. 5. С. 11—19; Nikitin K.V., Amosov E.A., Nikitin V.I., Glushchenkov V.A., Chernikov D.G. Theoretical and experimental substantiation of treatment of aluminum-based melts by pulsed magnetic fields. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 6. P. 599—605.

32. Ivanov Y.F., Alsaraeva K.V., Gromov V.E., Popova N.A., Konovalov S.V. Fatigue life of silumin treated with a high-intensity pulsed electron beam. J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques. 2015. Vol. 9. No. 5. P. 1056—1059.

33. Ivanov Y.F., Alsaraeva K.V., Gromov V.E., Konovalov S.V, Semina O.A. Evolution of Al—19.4Si alloy surface structure after electron beam treatment and high cycle fatigue. Mater. Sci. Technol. 2015. Vol. 31. No. 13. P. 1523—1529.

34. Prusov E.S., Panfilov A.A. Properties of cast aluminum-based composite alloys reinforced by endogenous and exogenous phases. Russ. Metall. 2011. No. 7. P. 670—674.

35. Prusov E.S., Panfilov A.A. Influence of repeated remeltings on formation of structure of castings from aluminium matrix composite alloys. In: Metal 2013: Proc. of 22-nd Int. Conf. on metallurgy and materials. 2013. No. 1. P. 1152— 1156.

36. Деев В.Б., Пономарева К.В., Приходько О.Г., Сметанюк С.В. Влияние температуры перегрева и заливки расплава на качество отливок из алюминиевых сплавов при литье по газифицируемым моделям // Изв. вузов. Цвет. металлургия. 2017. No. 3. С. 65— 71; Deev V.B., Ponomareva K.V., Prikhodko О.G., Smetanyuk S.V. The effect of overheating temperature and melt pouring temperature on the aluminum alloy casting quality in lost foam casting. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 4.


Review

For citations:


Deev V.B., Ponomareva K.V., Kutsenko A.I., Prikhodko O.G., Smetanyuk S.V. INFLUENCE OF MELTING CONDITIONS OF ALUMINUM ALLOYS ON THE PROPERTIES AND QUALITY OF CASTINGS OBTAINED BY LOST FOAM CASTING. Izvestiya. Non-Ferrous Metallurgy. 2017;(4):39-45. (In Russ.) https://doi.org/10.17073/0021-3438-2017-4-39-45

Views: 818


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)