Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

SILVER CRUST PROCESSING BY VACUUM

https://doi.org/10.17073/0021-3438-2017-4-21-29

Abstract

When cleaned from impurities lead is treated with zinc reacting with precious metals to form refractory intermetallics that are not soluble in the base metal – a silver crust (SС). The laboratory studies for processing of SС containing, %: 78–80 Pb; 15–17 Zn; 3–5 Ag; 0,0001–0,002 Au by vacuum distillation (t = 800÷1200 °C, Р = 10–1÷10–3 mm Hg; τ = 2÷42 h) to separate zinc, lead and precious metals. At t ~ 800 °C, Р = 10–1 mm Hg, zinc condensate was obtained containing, %: 99,85 Zn, 0,14 Pb. At t ~1000 °C, Р = 9·10–3 mm Hg, zinc-lead concentrate (15,7 Zn; 83,6 Pb; 0,02 Ag), lead concentrate (86–87 Pb; 0,4–2,8 Zn; 0,04–0,12 Ag), silver concentrate (50–67 Ag; 0,1–5,3 Pb, 0,04–0,2 Zn). At t ~1200 °C, Р = 6,5·10–3 mm Hg, lead concentrate (91–97 Pb, 0,6–1,7 Zn; 0,01–1,2 Ag) and silver concentrate (92 Ag, 1,4 Pb, 0,1 Zn) were obtained. It is shown that the degree of vacuum in the system increased up to over 0,1 mm Hg causes no significant changes in the indicators of silver crust vacuum distillation. Quantitative sublimation of zinc takes place at a temperature not exceeding 800 °C for 1 h. The end of the process is indicated by a pressure surge in the system up to Р = 1,5÷2,0 mm Hg. SC liquation producing crude lead (~42 % of the original quantity of Pb) and liquated silver crust (LSC) containing, %: 76,39 Pb; 16,56 Zn; 6,254 Ag, is possible for 2 h in an inert gas atmosphere (Ar) at t = 700±10 °C without vacuum. Temperature of lead draining is 380±10 °C. Quantitative sublimation of lead and zinc from LSC is optimal (>99 %) at t £ 1000 °C for 12 h, At the same time ~20 % silver of the original quantity in SC is extracted from the composition. Velocities of zinc (800 °C), lead and silver (1000 °C) sublimation are identified (calculation/experience) and equal to v·10–4 g/(cm2·s): 19,13/24,05 Zn; 6,25/8,6 Pb; 0,0068/0,0065 Ag. These v values can be used to design the equipment for vacuum distillation of silver crust.

 

About the Authors

A. A. Korolev
JSC «Uralelectromed»
Russian Federation

Chief еngineer



S. A. Krayukhin
JSC «Uralelectromed»
Russian Federation

Cand. Sci. (Eng.), Head of Research center



G. I. Maltsev
JSC «Uralelectromed»
Russian Federation

Dr. Sci. (Eng.), Senior scientific officer, Chief specialist, Research center



E. S. Filatov
JSC «Uralelectromed»
Russian Federation

Dr. Sci. (Eng.), Senior scientific officer, Leading specialist, Research center



References

1. Erez B.-Y., V. Yitzhak, Brink Edwin C. M., Ron B. A new Ghassulian metallurgical assemblage from Bet Shemesh (Israel) and the earliest leaded copper in the Levant. J. Archaeolog. Sci.: Reports. 2016. Vol. 9. P. 493—504.

2. Yin N.-H., Sivry Y., Avril C. Bioweathering of lead blast furnace metallurgical slags by Pseudomonas aeruginosa. Int. Biodeter.Biodegradat. 2014. Vol. 86. Pt. C. P. 372—381.

3. Capannesi G., Rosada A., Avino P. Elemental characterization of impurities at trace and ultra-trace levels in metallurgical lead samples by INAA. Microchem. J. 2009. Vol. 93. No. 2. P. 188—194.

4. Sun B., Yang C., Gui W. A discussion of the control of nonferrous metallurgical processes. IFAC-papers on line. 2015. Vol. 48. No. 17. P. 80—85.

5. Yin N.-H., Sivry Y., Benedetti M.F. Application of Zn isotopes in environmental impact assessment of Zn—Pb metallurgical industries: A mini review. Appl. Geochem. 2016. Vol. 64. P. 128—135.

6. Sethurajan M., Huguenot D., Jain R. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. J. Hazard. Mater. 2017. Vol. 324. Pt. A. P. 71—82.

7. Yu Z., Ma W., Xie K. Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China. Appl. Energy. 2017. Vol. 185. No. 1. P. 68—81.

8. Roest R, Lomas H., Hockings K. Fractographic approach to metallurgical coke failure analysis. Pt. 1: Cokes of single coal origin. Fuel. 2016. Vol. 180. P. 785—793.

9. Shi X., Zhang J., Yang X. Metallurgical leaching of metal powder for facile and generalized synthesis of metal sulfide nanocrystals. Colloid. Surf. A: Physicochem. Eng. Aspects. 2016. Vol. 497. P. 344—351.

10. Jamali-Zghal N., Lacarrière B., Le Corre O. Metallurgical recycling processes: Sustainability ratios and environmental performance assessment. Resourc. Conservat. Re-cycl. 2015. Vol. 97. P. 66—75.

11. Asavavisithchai S., Preuksarattanawut T., Nisaratana-porn E. Microstructure and compressive properties of open-cell silver foams with different pore architectures. Proc. Mater. Sci. 2014. Vol. 4. P. 51—55.

12. Li Z.-K., Bi S.-J., Li J.-W. Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton. Ore Geology Rev. 2017. Vol. 82. P. 232—251.

13. Hsuan T.-C., Lin K.-L. Microstructural evolution of ε-AgZn3 and η-Zn phases in Sn—8,5 Zn—0,5 Ag—0,01 Al—0,1 Ga solder during aging treatment. J. Alloys and Compounds. 2009. Vol. 469. No. 1-2. P. 350—356.

14. Gain A. K., Chan Y. C., Sharif A. Effect of small Sn—3.5Ag—0.5Cu additions on the structure and properties of Sn—9Zn solder in ball grid array packages. Microelectr. Eng. 2009. Vol. 86. No. 11. P. 2347—2353.

15. Gutierrez-Perez V.H., Cruz-Ramirez A., Vargas-Ramirez M. Silver removal from molten lead through zinc powder injection. Trans. Nonferr. Met. Soc. China. 2014. Vol. 24. No. 2. P. 544—552.

16. Kong X., Yang B., Xiong H. Thermodynamics of removing impurities from crude lead by vacuum distillation refining. Trans. Nonferr. Met. Soc. China. 2014. Vol. 24. No. 6. P. 1946—1950.

17. Wang Z., Harris R. Prediction of the thermodynamic properties of Pb—Zn—Ag from binary data. In: Proc. Int. Symp. on Primary and Secondary Lead Processing (Ha-lifax. Nova Scotia, 20—24 Aug. 1989). A volume in Proceedings of Metallurgical Society of Canadian Institute of Mining and Metallurgy. 1989. P. 239—251.

18. Дьяков В.Е. Разработка и испытание вакуумного аппарата разделения свинцово-оловянных отходов сплавов // Междунар. науч.-иссл. журн. 2016. № 3 (45). Ч. 2 (29). С. 11—14; Dyakov V.E. Razrabotka i ispytanie vakuumnogo apparata razdelenija svincovo-olovjannykh othodov splavov [Development and testing of the vacuum apparatus separation of lead-tin alloys waste]. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. 2016. No. 3 (45). Pt. 2 (29). P. 11—14.

19. Nan C., Yang H.W., Yang B. Experimental and modeling vapor-liquid equilibria: Separation of Bi from Sn by vacuum distillation. Vacuum. 2017. Vol. 135. P. 109—114.

20. Кеменов В.Н., Нестеров С.Б. Вакуумная техника и технология: Учеб. пос. для вузов. М.: Издательство МЭИ, 2002; Kemenov V.N., Nesterov S.B. Vakuumnaya tehnika i tehnologiya [Vacuum technique and technology]. Moscow: Izdatel’stvo MJeI, 2002.

21. Иванов В.Е., Папиров И.И., Тихинский Г.Ф. Чистые и сверхчистые металлы. М.: Металлургия, 1965; Ivanov V.E., Papirov I.I., Tihinskij G.F. Chistye i sverhchistye metally [Pure and ultrapure metals]. Moscow: Metallurgiya, 1965.

22. Самарин А.М. Вакуумная металлургия. М.: Металлургиздат, 1962; Samarin A.M. Vakuumnaja me-tallurgiya [Vacuum metallurgy]. Moscow: Metallurgizdat, 1962.

23. Kong X., Yang B., Xiong H. Removal of impurities from crude lead with high impurities by vacuum distillation and its analysis. Vacuum. 2014. Vol. 105. P. 17—20.

24. Roth A. Physico—chemical phenomena in vacuum techniques. Vacuum Technol. 1990. P. 149—199.

25. He Z., Dai Y. The behavior of parkes’ process of zinc crusts in vacuum distillation. J. Kunming Inst. Technol. 1989. Vol. 14. No. 1. P. 35—40.

26. Манохин А.И. Процессы цветной металлургии при низких давлениях. М.: Наука, 1983; Manohin A.I. Processy tsvetnoj metallurgii pri nizkikh davleniyakh [Processes of nonferrous metallurgy at low pressures]. Mos-cow: Nauka, 1983.


Review

For citations:


Korolev A.A., Krayukhin S.A., Maltsev G.I., Filatov E.S. SILVER CRUST PROCESSING BY VACUUM. Izvestiya. Non-Ferrous Metallurgy. 2017;(4):21-29. (In Russ.) https://doi.org/10.17073/0021-3438-2017-4-21-29

Views: 868


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)