ACOUSTIC FIELD ENERGY UTILIZATION FOR LOWERING DUST REMOVAL FROM THE VANYUKOV FURNACE
https://doi.org/10.17073/0021-3438-2017-4-4-11
Abstract
The acoustic generator technology was used to arrange in-furnace dust deposition in the Vanyukov furnace, OJSC SUMZ (Revda, Russia). The generator design included a nozzle tube, an air nozzle, a resonator and a focusing surface. The total acoustic power of the acoustic field and the optimum number and location of the acoustic generators were determined based on the surface area of the furnace molten pool and the recommended values of specific acoustic power for in-furnace dust deposition. To create an acoustic field in the Vanyukov’s furnace for melting the sulfide copper zinc-containing raw material and depleting the liquid converter slag, four acoustic generators were installed in the end wall through the inspection window: two on the uptake side and two on the charge material loading side. In total, six pilot modes of in-furnace dust deposition system testing at different operation settings of acoustic generators were implemented with one basic mode to compare performance. The duration of test periods ranged from 5 to 18 days, and the total operation time of the unit using acoustic generators was 68 days. It should be noted that the presence of an acoustic field in the furnace body at any operation settings of generators in one way or another helped to reduce the concentration of dust particles downstream the chain of gas purifiers (at the commodity point). According to test data, it was found that the minimum total acoustic power of the acoustic field, which reduces the dust concentration due to the coagulation of dust particles within the furnace space, is 800 W.
About the Authors
V. I. MatyukhinRussian Federation
Cand. Sci. (Eng.), Associate professor, Department of thermophysics and informatics in metallurgy (TIM)
V. A. Goltsev
Russian Federation
Cand. Sci. (Eng.), Associate professor, TIM Department
S. Ya. Zhuravlev
Russian Federation
Bachelor, Undergraduate, TIM Department
V. A. Dudko
Russian Federation
Bachelor, Undergraduate, TIM Department
References
1. Gushchin S.N., Telegin A.S., Lobanov V.I., Koryukov V.N. Teplotekhnika i teploenergetika metallurgichesko-go proizvodstva [Heating engineer and power system of metallurgical production]. Moscow: Metallurgiya, 1993.
2. Vanyukov A.V., Utkin N.I. Kompleksnaya pererabotka mednogo i nikelevogo syr’ya [Complex processing of copper and nickel raw materials]. Chelyabinsk: Metallurgiya, 1988.
3. Han Feng, Yu Fei, Cui Zhaojie. Industrial metabolism of copper and sulfur in a copper-specific eco-industrial park in China. J. Clean. Product. 2015. Vol. 133. P. 459—466
4. Naboichenko S.S., Ageev N.G., Doroshkevich A.P., Zhukov V.P., Eliseev E.I., Karelov S.V., Lebed’ A.B., Mamyachenkov S.V. Protsessy i apparaty tsvetnoi metallurgii [Processes and devices of nonferrous metallurgy]. Ekaterin-burg: UGTU—UPI, 2005.
5. Vaisburd S., Berner A., Brandon D.G., Kozhakhmetov S., Kenzhaliyev E., Zhalelev R. Slags and mattes in Vanyukov’s process for the extraction of copper. Metall. Mater. Trans. 2015. Vol. 33. No. 4. P. 551—559.
6. Chen L., Bin W., Yang T., Liu W., Bin S. Research and industrial application of oxygen-rich side-blow bath smelting technology. In: Proc. of 4-th Int. Symp. on High-Temperature Metallurgical Processing (TMS 2013). Annual Meeting and Exhibition (San Antonio, TX, United States, 3—7 March 2013). 2013. P. 49—55.
7. Matyukhin V.I., Yaroshenko Yu.G., Matyukhin O.V., Pan’-shin A.M., Konovalov I.S. Ispol’zovanie energii akusticheskogo polya dlya uluchsheniya pokazatelei raboty shakhtnykh pechei [Using the energy of the acoustic field to improve the performance of the shaft furnace]. Tsvet. metally. 2013. No. 8. P. 64—70.
8. Asanov D.A., Filyanova L.A., Zapasnyi V.V., Sukhova N.M. Study of the performance indices of a dust-cleaning system at the balkhash copper smelter. Metallurgist. 2016. No. 3-4. P. 331—338.
9. Zhang H.L., Zhou C.Q., Bing W.U., Chen Y.M. Numerical simulation of multiphase flow in a Vanyukov furnace. J. Southern African Institute of Mining and Metallurgy. 2015. Vol. 115. No. 5. P. 457—463.
10. Kutateladze S.S. Teplo i massoobmen v zvukovom pole [Heat and mass transfer in the acustic field]. Novosibirsk: SO AN SSSR, 1970.
11. Cafiero G., Greco C.S., Astarita T., Discetti S. Flow field features of fractal impinging jets at short nozzle to plate distances. Exp. Therm. Fluid Sci. 2016. No. 78. P. 334—344.
12. Andrade M.A.B., Skotis G.D., Ritchie S.B, Cumming D.R.S., Riehle M.O., Bernassau A.L. Contactless acoustic manipulation and sorting of particles by dynamic acoustic fields. IEEE Trans. Ultrason., Ferroelectr., Frequ. Contr. 2016. Vol. 63. Iss. 10. P. 1593—1600.
13. Dong X.-R., Liu Y.-X, Chen Y.-H., Dong G. Research on control of hypersonic shock wave/boundary layer interactions by double micro-ramps. Binggong Xuebao. Acta Armamentarii. 2016. Vol. 37. No. 9. P. 1624—1632.
14. Dolinskii A.A., Basok B.I., Gulyi S.I. Diskretno-impul’snyi vvod energii v teplotekhnologiiyah [Discrete and pulse input of energy in heattechnologies]. Kiev: ITTF NANU, 1996.
15. Seregin P.S. Issledovanie gazovoi dinamiki vnutripechno-go prostranstva, pylevynosa i nastyleobrazovaniya v pechi Vanyukova s ispol’zovaniem metoda fizicheskogo modelirovaniya: Diss. PhD. Sankt-Peterburg: Institut Gipronikel’, 2001.
16. Selivanov E.N., Gulyaeva R.I., Skopov G.V., Matveev A.V. Material composition of the dust from the electrostatic precipitators of a Vanyukov furnace at the Middle Ural Copper Smelter. Metallurgist. 2014. No. 5-6. P. 431—435.
17. Kardashev G.A. Fizicheskie metody intensifikatsii pro-tsessov v khimicheskoi tekhnologii [Physical methods of intensification of processes in chemical technology]. Moscow: Khimiya, 1990.
18. Konovalov I.S. Sovershenstvovanie teplovoi i gazodinamicheskoi raboty shakhtnykh medeplavil’nykh pechei: Diss. PhD. Ekaterinburg: UFU, 2012.
19. Shilton R.J., Yeo L.Y., Friend J.R. Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells. Sensors and Actuators. B: Chem. 2011. Vol. 160. No. 1. P. 1565—1572.
20. Khabeev N.S. Intensification of the effect exerted by bubbles on a body immersed in a liquid due to the radial bubble oscillations. J. Eng. Phys. Thermophys. 2015. Vol. 88. No. 3. P. 645—651.
21. Ivanovskii A.I. Teoreticheskoe i eksperimental’noe izuchenie potokov, vyzvannykh zvukom [Theoretical and experimental study of the flow caused by the sound]. Moscow: Gidrometeoizdat, 1959.
22. Rudenko O.V., Molen S.I. Teoreticheskie osnovy nelineinoi akustiki [Theoretical foundations of nonlinear acoustics]. Moscow: Nauka, 1978.
Review
For citations:
Matyukhin V.I., Goltsev V.A., Zhuravlev S.Ya., Dudko V.A. ACOUSTIC FIELD ENERGY UTILIZATION FOR LOWERING DUST REMOVAL FROM THE VANYUKOV FURNACE. Izvestiya. Non-Ferrous Metallurgy. 2017;(4):4-11. (In Russ.) https://doi.org/10.17073/0021-3438-2017-4-4-11