Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

INCREASING THE EFFICIENCY OF GAS-SCRUBBING SYSTEMS IN ALUMINUM PRODUCTION

https://doi.org/10.17073/0021-3438-2017-3-45-55

Abstract

The paper demonstrates the possibility of increasing the efficiency of gas scrubbing systems in aluminum production by improving technologies for trapping and treatment of liquid and solid waste. The paper proposes a non-waste process of «wet» gas scrubbing waste recycling, which makes it possible to obtain fluoroaluminates with a cryolite module of no greater than 1,8–2,0. During treatment of gas scrubbing solutions the optimum ratio of fluoroaluminium acid to sodium fluoride is 14 : 9 (g/kgН2О), which ensures the most complete bonding of aluminum fluoride ions into regeneration products. The pH interval 5Al3F14 (admixed with AlF3), with structural transition from the chiolite to the cryolite Na3AlF6 occurring at pH = 4÷6. This cycle provides for the simultaneous production of aluminum sulfate and carbon concentrates, non-waste treatment of fluoride-alumina slurries, and the use of carbon dioxide in processes of neutralization and treatment of sewage. The paper calculates optimum parameters which ensure emission reduction and improve the balance of components when introducing the «dry» gas scrubbing into a combined (parallel and sequential) scheme of gas scrubbing and regeneration facilities.

About the Authors

N. V. Golovnykh
Institute of Geochemistry of the SB RAS
Russian Federation

Cand. Sci. (Chem.), leading engineer of the Laboratory of environmental geochemistry and physico-chemical modeling

(664033, Russia, Irkutsk, Favorskii str., 1a).  



V. A. Bychinski
Institute of Geochemistry of the SB RAS; Irkutsk State University
Russian Federation

Cand. Sci. (Geol.-Miner.), senior researcher of the Laboratory of environmental geochemistry and physico-chemical modeling of the Institute of Geochemistry of the SB RAS, assistant professor of Department of geochemistry of the Irkutsk State University

(664003, Russia, Irkutsk, Karl Marks str., 1). 



L. M. Filimonova
Institute of Geochemistry of the SB RAS
Russian Federation
Researcher of the Laboratory of environmental geochemistry and physico-chemical modeling 


K. V. Chudnenko
Institute of Geochemistry of the SB RAS
Russian Federation
Dr. Sci. (Geol.-Miner.), head of the Laboratory of environmental geochemistry and physico-chemical modeling


I. I. Shepelev
Institute of Geochemistry of the SB RAS
Russian Federation
Dr. Sci. (Geol.-Miner.), head of the Laboratory of environmental geochemistry and physico-chemical modeling


References

1. Grinberg I.S. Ekologiya i bezopasnost’ v proizvodstve alуuminiya [Ecology and safety in the production of aluminum]. St. Petersburg: MANEB, 2006.

2. Nordheim E. Environmental regulations and performance for European smelters. In: Light Metals. Ed. H. Kvande. TMS, 2005. P. 275–277.

3. Dando N.R., Tang R. Impact of tending practices on fluoride evolution and emission aluminum smelting pots. In: Light Metals. Ed. T.J. Galloway. Wiley-TMS, 2006. Vol. 2. P. 203–206.

4. Burkat V.S., Kaluzhskiy N.A., Smola V.I., Safarova L.E. Sovremennoe sostoyanie i puti povysheniya ekologi-cheskoi bezopasnosti proizvodstva alуuminiya [Current state and ways to improve the environmental safety of the production of aluminum]. Tsvetnye metally. 2001. No. 12. P. 89–94.

5. Kulikov B.P., Istomin S.P. Pererabotka otkhodov alyuminievogo proizvodstva [Recycling aluminum production]. St. Petersburg: MANEB, 2004.

6. Golovnykh N.V., Bychinskiy V.A., Filimonova L.M., Chudnenko K.V. Optimizatsiya retsiklinga ftorsoderzhashchikh soedinenii v proizvodstve alуuminiya [Optimizing recycling fluorine-containing compounds in the production of aluminum]. Tsvetnaya metallurgiya. 2015. No. 5. P. 64–69.

7. Clouter B., Dumortier P., Caratge B. A novel reactor / filter concept for dry scrubbing. In: Light Metals. Ed. R. Hu-glen. TMS, 1997. P. 187–190.

8. Pedersen T.B. The Soderberg cell technology — present performance, challenges and possibilities. In: Ligh Metals. Ed. J.L. Anjier. Minerals, Metals & Materials Society, 2001. P. 489–495.

9. Shuk L., Wedde G. Removal of impurities from dry scrubbed fluorideenriched alumina. In: Light Metals. Ed. W. Hale. Minerals, Metals & Materials Society, 1996. P. 399–403.

10. Golovnykh N.V., Istomin S.P., Veselkov V.V., Kiselev A.I. Razrabotka protsessov termogranulyatsii pri utilizatsii ftorsoderzhashchikh otkhodov [Development of thermal processes of granulation for recycling of fluorine-containing waste]. Ekologiya promyshlennogo proizvodstva. 2003. No. 1. P. 39–46.

11. Lamb W.D. Role and fate of SO2 in the aluminium reduction cell dry scrubbing system. Metallurgical society of AIME. In: Ligh Metals. Ed. W.S. Peterson. American Institute of Mining, Metallurgical and Petroleum Engineers, 1979. P. 909–925.

12. Haberl A., Langle J.F. Dry and wet scrubbersfor High-Amperage Pots Some Resent Development. In: Light Metals. Ed. W. Schneider. TMS, 2002. P. 269–276.

13. Wedde G., Opsahl T., Henriksen P.P. Experiences with high performance dry and wet scrubbing systems for potlines. In: Light Metals. Ed. A.T. Tabereaux. TMS, 2004. P. 357–360.

14. Dernedde E. Estimation of fluoride emissions to the atmosphere. In: Light Metals. Ed. B.J. Welch. Minerals, Metals & Materials Society, 1998. P. 317–322.

15. Iffert M., Kuenkel M., Skillas-Kazacos M., Welch B. Reduction of the emission from the Trimet aluminum smelter (optimizing dry scrubber operations and its impact on process operations). In: Light Metals. Ed. T.J. Galloway. Wiley-TMS, 2006. Vol. 2. P. 195–201.

16. Chudnenko K.V. Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespe-chenie, prilozheniya [Thermodynamic modeling in geochemistry: theory, algorithms, software, applications]. Novosibirsk: Geo, 2010.

17. Dorogokupets P.I., Karpov I.K., Lashkevich V.V., Naigebauer V.A., Kaz’min L.A. Izobarno-izotermicheskie po-tentsialy mineralov, gazov i komponentov vodnogo rastvora v programmnom komplekse «Selektor». In: Fiziko-khimicheskie modeli v geokhimii [Isobaric-isothermal potential of minerals, gas and water components of the solution in the «Selector» software package. In: Physico-chemical models in geochemistry]. Novosibirsk: Nauka, 1988. P. 124–147.

18. Lur’e Yu.Yu. Spravochnik po analiticheskoi khimii [Handbook of analytical chemistry]. Moscow: Khimiya, 1971.

19. Golovnykh N.V., Bychinskiy V.A., Mukhetdinova A.V., Shepelev I.I., Chudnenko K.V. Ispol’zovanie metoda komp’yu-ternogo fiziko-khimicheskogo modelirovaniya pri issle-dovanii tekhnologicheskikh protsessov i system. In: Sbornik dokladov III mezhdunarodnogo kongressa «Tsvet-nye metally-2011» [The use of computer modeling of physical and chemical technology in the study of processes and systems. In: Proceedings of the III International Congress «Non-Ferrous Metals 2011»]. Krasnoyarsk: Verso, 2011. P. 203–210.

20. Golovnykh N.V., Bychinskiy V.A., Tupitsyn A.A., Shepelev I.I. Optimizatsiya tekhnoologicheskoi skhemy re-generatsii ftoristykh solei v usloviyakh sovremenno-go alуuminievogo proizvodstva [Optimization of the technological scheme of the regeneration of fluorides in the conditions of modern aluminum production]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2006. No. 2. P. 12–l8.


Review

For citations:


Golovnykh N.V., Bychinski V.A., Filimonova L.M., Chudnenko K.V., Shepelev I.I. INCREASING THE EFFICIENCY OF GAS-SCRUBBING SYSTEMS IN ALUMINUM PRODUCTION. Izvestiya. Non-Ferrous Metallurgy. 2017;(3):45-55. (In Russ.) https://doi.org/10.17073/0021-3438-2017-3-45-55

Views: 658


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)