Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

THERMODYNAMIC SIMULATION OF CHEMICAL AND PHASE TRANSFORMATIONS IN THE Fe2O3–NiO–CoO–C SYSTEM

https://doi.org/10.17073/0021-3438-2017-3-37-44

Abstract

The paper describes the thermodynamic simulation of chemical and phase transformations in the Fe2O3–NiO–CoO–C system carried out using the Astra 4 multipurpose software package developed at the Bauman Moscow State Technical University, which was designed to simulate equilibrium states and processes in high-temperature systems with chemical and phase transformations. The study of chemical and phase transformation simulation in the system was carried out in temperature ranges of 573–1773 K and pressure ranges of 0,001–0,1 MPa. In the course of simulation it was found that iron mainly transited into Fe(k) and its transition degree (αFe) was from 28,9 % at Т = 1173 K to 99,05 % at Т = 1773 K; the value of αNi was 100 % at Т = 573÷1273 K and decreased to 99,99 % (when starting transition into the gaseous phase) when the temperature increased to 1773 K; the transition degree of cobalt (similar to nickel, it was distributed into Со(к)) was 100 % at Т = 573÷1273 K and decreased to 99,99 % (when starting transition into the gaseous phase) when the temperature increased to 1773 K.

About the Authors

A. S. Kolesnikov
South Kazakhstan State University named after M. Auezov
Kazakhstan

Cand. Sci. (Tech.), associate prof. of the Department «Technology of cement, ceramics and glass» 

(160012, Kazakhstan, Shymkent, Tauke Khan avenue, 5)



S. P. Nazarbekova
South Kazakhstan State University named after M. Auezov
Kazakhstan
Dr. Sci. (Chem.), prof. of the Department of chemistry, director of the Department of academic affairs


K. S. Baibolov
South Kazakhstan State University named after M. Auezov
Kazakhstan
Cand. Sci. (Tech.), associate prof. of the Department «Industrial, civil and road construction», prorector for academic affairs and information technology


Sh. A. Dzholdasova
South Kazakhstan State University named after M. Auezov
Kazakhstan
Cand. Sci. (Tech.), associate prof. of the Department of chemistry


References

1. Reznik I.D., Ermakov G.P., Shneerson Ya.M. Nikel’ [Nickel]. Moscow: Nauka i tekhnologiya, 2001.

2. Borbat V.F., Leshch I.Yu. Novye protsessy v metallurgii nikelya i kobal’ta [New processes in metallurgy of nickel and cobalt]. Moscow: Metallurgiya, 1976.

3. Alibhai K.A.K., Dudeney A.W.L., Leak D.J., Agatzini S., Tzeferis P. Bioleaching an bioprecipitation of nicel and iron iron from laterites. FEMS Microbiol. Rev. 1993. Vol. 1—3. Р. 87—96.

4. Sukla L.B., Panchanadikar V.V., Kar R.N. Regional Research Laboratory, Bhubaneswar 751013, Orissa, India. World J. Microbiol. Biotechnol. 1993. Vol. 9. No. 2. Р. 255— 257.

5. Zhivayeva A.B., Bashlykova T.V., Doroshenko M.V., Gor-shkov G.V., Gorshkova T.I., Sviridov L.I. Bakterial’noye vyshchelachivanie silikatnykh nikelevykh rud [Bacterial leaching of silicate nickel ores]. Tsvetnye metally. 2007. No. 3. Р. 65—67.

6. Seggiania M., Vitoloa S., D’Antoneb S. Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin. Hydrometallurgy. Vol. 81. No. 1. 2006. P. 9—14.

7. Mohapatra S., Sengupta Ch., Nayak B.D., Sukla L.B., Mishra B.K. Effect of thermal pretreatment on recovery of nickel and cobalt from Sukinda lateritic nickel ore using microorganisms. Korean J. Chem. Eng. 2008. Vol. 25. P. 1070—1075.

8. Zhou Sh., Wei Y., Li B., Wang H., Ma B., Wang Ch. Chlo-ridization and reduction roasting of high-magnesium low-nickel oxide ore followed by magnetic separation to enrich ferronickel concentrate. Metall. Mater. Trans. B. 2016. Vol. 47. P. 145—153.

9. Kim K.D., Huh W.W., Min D.J. Effect of FeO and CaO on the sulfide capacity of the ferronickel smelting slag. Metall. Mater. Trans. B. 2014. Vol. 45. P. 889—896.

10. Kolesnikov A.S., Kapsalyamov B.A., Kolesnikova O.G., Kuraev R.M., Stryukovskii I.A. Tekhnologiya pererabotki otkhodov tsinkovoi promyshlennosti s polucheniem fer-rosplava i vozgonov tsvetnykh metallov. [The technology of recycling of waste zinc industry with the obtaining of ferroalloy and sublimates non-ferrous metals]. Vestnik YuUrGU. 2013. No. 1. P. 34—39.

11. Kolesnikov A.S. Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 1. Р. 1—5.

12. Kolesnikov A.S. Termodinamicheskoe modelirovanie polucheniya ferrosplava i vozgonov tsvetnykh metallov v sisteme klinker vel’tsevaniya — uglerod [Thermodynamic modeling of the obtaining of ferroalloy and sublimates non-ferrous metals in the system of the waelz clinker — carbon]. In: Aktual’nye innovatsionnye issledovaniya: Nauka i praktika. 2013. No. 2. Р. 12—17.

13. Roine A. Outokumpu HSC Chemistry for Windows. Chemical reaction and equilibrium loftware with extensive thermochemical database. Pori: Outokumpu Research OY, 2002.

14. Sinyarev G.V., Vatolin N.A., Moiseev G.K. Primenenie EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov [The use of computers for thermodynamic calculations of metallurgical processes]. Moscow: Nauka, 1962.

15. Trusov B.G. Termodinamicheskii metod analiza vysoko-temperaturnykh sostoyanii i protsessov i ego praktiches-kaya realizatsiya [Thermodynamic method of analysis high temperature states and processes and its practical implementation]: Dissertation of Dr. Sci. (Tech.). Mos-cow: MVTU, 1984.


Review

For citations:


Kolesnikov A.S., Nazarbekova S.P., Baibolov K.S., Dzholdasova Sh.A. THERMODYNAMIC SIMULATION OF CHEMICAL AND PHASE TRANSFORMATIONS IN THE Fe2O3–NiO–CoO–C SYSTEM. Izvestiya. Non-Ferrous Metallurgy. 2017;(3):37-44. (In Russ.) https://doi.org/10.17073/0021-3438-2017-3-37-44

Views: 683


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)