THE EFFECT OF CAPILLARY PRESSURE IN NANOBUBBLES ON THEIR ADHERENCE TO PARTICLES DURING FROTH FLOTATION. PART 5. CURVES OF NANOBUBBLE SPREADING UPON A SURFACE WITH VARIOUS WETTABILITY
https://doi.org/10.17073/0021-3438-2017-3-11-22
Abstract
For the purpose of improving the accuracy of obtained results, the paper compares two methods for studying wetting and spreading processes upon a solid substrate. The first method utilizes liquid droplets, and the second method utilizes bubbles. When spreading, the shape of droplets and bubbles changes, and this can be assessed quantitatively only by the Laplace equation, though the equation is applied only in the case of bubbles (the second method). For the first method, this excludes control over surface cleanliness of the spreading droplet. The effect of micropollution on the results is considered on the basis of precise calculations carried out for both methods. The paper calculates spreading curves for nanobubbles with initial diameters of 20 and 10 nm on substrates with different wettability, where the wettability is assessed not by the numerical value of the contact angle, but by easily realized samples of such substrates Г, Ф and Нх corresponding to the contact angle, where х is the fraction of the surface under the bubble, covered with molecules of the ionogenic collector: 0,8; 0,6; 0,4, and 0,2. The spreading curves clearly illustrate the range of possible spreading of nanobubbles, from the limit spreading on the substrate Г to practically zero spreading on the substrate Ф, as well as energy sources of the spreading process and causes of their depletion. The informational value of spreading curves is preconditioned by the fact that more than ten parameters of the bubble and the substrate are used in their calculation. When using reagents, activation of the flotation process can spread to larger bubbles.
About the Authors
V. I. Melik-GaikazyanRussian Federation
Dr. Sci. (Chem.), prof., head of the Laboratory of surface phenomena and flotation
(305040, Russia, Kursk, 50 let Oktyabrya str., 94)
V. S. Titov
Russian Federation
Dr. Sci. (Tech.), prof., head of the Department of computer science
(305040, Russia, Kursk, Chelyuskintsev str., 19/2)
N. P. Emel’yanova
Russian Federation
Cand. Sci. (Chem.), associate prof., Laboratory of surface phenomena and flotation
D. V. Dolzhenkov
Russian Federation
Postgraduate
References
1. Melik-Gaykazyan V.I., Emel’yanova N.P., Yushina T.I. Vliyanie kapillyarnogo davleniya v puzyr’kakh na ikh prilipanie k chastitsam pri pennoi flotatsii. Chast’ 1 [Influence effect of capillary pressure in bubbles upon their adhesion to particles at froth flotation. Pt. 1]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2013. No. 1. P. 3—12. URL: http://dx.doi.org/10.17073/0021-3438-2013-1-3-12.
2. Melik-Gaykazyan V.I., Emel’yanova N.P., Yushina T.I. Vliyanie kapillyarnogo davleniya v puzyr’kakh na ikh prilipanie k chastitsam pri pennoi flotatsii. Chast’ 2 [Influence effect of capillary pressure in bubbles upon their adhesion to particles at froth flotation. Pt. 2]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2013. No. 3. P. 7—12. URL: http://dx.doi.org/10.17073/0021-3438-2013-3-7-12.
3. Melik-Gaykazyan V.I., Emel’yanova N.P., Dolzhenkov D.V. Vliyanie kapillyarnogo davleniya v nanopuzyr’kakh na ikh prilipanie k chastitsam pri pennoi flotatsii. Chast’ 3 [Influence effect of capillary pressure in bubbles upon their adhesion to particles at froth flotation. Pt. 3]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2014. No. 3. P. 3-10. URL: http://dx.doi.org/10.17073/0021-3438-2014-3-3-10.
4. Melik-Gaykazyan V.I., Titov V.S., Emel’yanova N.P., Dolzhenkov D.V. Vliyanie kapillyarnogo davleniya v na-nopuzyr’kakh na ikh prilipanie k chastitsam pri pennoi flotatsiyu. Chast’ 4. Rastekayushchiesya nanopuzyr’ki — prirodnye fraktaly [Influence effect of capillary pres- sure in bubbles upon their adhesion to particles at froth flotation. Pt. 4. Spreading nanobubbls — natural fractals]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2016. No. 4. P. 4—12. URL: http://dx.doi.org/10.17073/0021-3438-2016-4-4-12.
5. Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E. Wetting and spreading. Rev. Modern Phys. 2009. Vol. 81. No. 2. P. 739—805. URL: http://dx.doi.org/10.1103/Rev-ModPhys.81.739 (accessed: 24.10.2016).
6. Chen J.D. Experiments on a spreading drop and its contact angle on a solid. J. Colloid Interface Sci. 1988. Vol. 122. No. 1. P. 60—72. URL: http://www.science-direct.com/science/article/pii/0021979788902871 (accessed: 24.10.2016).
7. De Gennes P.G. Wetting: statics and dynamics. Rev. Modern Phys. 1985. Vol. 57. No. 3. P. 827—863. URL: http:// www.physics.uci.edu/~taborek/publications/other/de-GennesWettingReview.pdf (accessed: 24.10.2016).
8. De Gennes P.G., Brochard-Wyart F., Quéré D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media, 2013. URL: http://tocs.ulb.tu-darmstadt.de/114142769.pdf (accessed: 24.10.2016).
9. Starov V.M., Velarde M.G., Radke C.J. Wetting and spreading dynamics. CRC press, 2007. Vol. 138. URL: https://scholar.google.ru/scholar?hl=ru&q=.+++Starov+V.+M.%2C+Velarde+M.+G.%2C+Radke+C.+J.+Wetting+and+spreading+dynamics.+%E2%80%93+CRC+-press%2C+2007.+%E2%80%93+%D0%A 2.+138.&btnG= (accessed: 27.10.2016).
10. Yuan Y., Lee T.R. Contact angle and wetting properties. Surf. Sci. Techniq. Springer Berlin Heidelberg, 2013. P. 3—34. URL: http://link.springer.com/chapter/10.1007/978-3-642-34243-1_1#page-1 (accessed: 27.10.2016).
11. Melik-Gaykazyan V.I., Emel’yanova N.P. Konkuriruyush-chie predstavleniya v rabotakh po pennoi flotatsii i pers-pektivy ikh primeneniya dlya podbora reagentov [Competitive representations in studies on froth flotation and prospects of their application for selection of reagents]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2007. No. 4. P. 4—21.
12. Bashforth F., Adams J.C. An attempt to test the theories of capillary action: by comparing the theoretical and measured forms of drops of fluid. Cambridge: University Press, 1883.
13. Adam N.K. Fizika i khimiya poverkhnostei [Physics and chemistry of surfaces]. Moscow-Leningrad: Gostekh-izdat, 1947. URL: http://libarch.nmu.org.ua/handle/ GenofondUA/79566 (accessed: 27.10.2016).
14. Adam N.K. The physics and chemistry of surfaces. N.Y.: Dover Publications, 1968.
15. Adamson A. Fizicheskaya khimiya poverkhnostei [Physical chemistry of surfaces]. Moscow: Mir, 1979. URL: http://ir.nmu.org.ua/handle/GenofondUA/62612/ (accessed: 27.10.2016).
16. Adamson A.W. Physical chemistry of surfaces. Phys. Chem. Surf. John Wiley & Sons, 1976. URL: http://eknigi.org/estestvennye_nauki/100193-physical-chemistry-of-surfaces.html (accessed: 27.10.2016).
17. Leja J., Poling G.W. On the interpretation of contact angle. In: Proc. 5-th Mineral Processing Congress. London: IMM, 1960. P. 325—336.
18. Frumkin A.N., Gorodetskaya A.V., Kabanov B.N., Nekrasov N.I. Elektrokapillyarnye yavleniya i smachivaemost’ metallov elektrolitami [Electrocapillary phenomena and wettability of metals with electrolytes]. Zhurnal fizicheskoi khimii. 1932. Vol. 3. No. 5—6. P. 351—367.
19. Frumkin A.N. Ob yavleniyakh smachivaniya i prilipaniya puzyr’kov. I [About the phenomena of wetting and adhesion of bubbles]. Zhurnal fizicheskoi khimii. 1938. Vol. 12. No. 4. P. 337—345.
20. Frumkin A.N. Über die Erscheinungen der Benetzung und des Anhaftens von Bläschen. I. Acta Physicochim. URSS. 1938. Vol. 9. P. 313—326.
21. Hoover T.J. Concentrating ores by flotation. 3-rd ed. Lon-don: The Mining Magazine, 1916.
22. Sutherland K.L., Wark I.W. Principles of flotation. Mel-bourne: Australasian Institute of Mining and Metallurgy, 1955.
Review
For citations:
Melik-Gaikazyan V.I., Titov V.S., Emel’yanova N.P., Dolzhenkov D.V. THE EFFECT OF CAPILLARY PRESSURE IN NANOBUBBLES ON THEIR ADHERENCE TO PARTICLES DURING FROTH FLOTATION. PART 5. CURVES OF NANOBUBBLE SPREADING UPON A SURFACE WITH VARIOUS WETTABILITY. Izvestiya. Non-Ferrous Metallurgy. 2017;(3):11-22. (In Russ.) https://doi.org/10.17073/0021-3438-2017-3-11-22