Methods to calculate the time of thin circular membrane superplastic forming
https://doi.org/10.17073/0021-3438-2017-2-66-75
Abstract
The process of superplastic forming of a circular membrane under constant pressure is analyzed. The analytical process model is built based on principal assumptions of the thin shell theory, and two simplified approaches known from the literature and based on the hypothesis on the uniform thickness of a shell along its profile, and the uniform stretching of a meridian passing the dome apex. The methods of calculating the duration of superplastic forming of a circular membrane are considered. The finite element modeling of the process considered is made using the educational version of ANSYS software. The paper considers two boundary value problems stated in terms of superplasticity mechanics – the theory of creep and the theory of viscoplasticity. The results of analytical formula calculations are compared with the solutions of boundary value problems in terms of the creep and viscoplasticity theories obtained in the ANSYS software environment. The material constant values are determined from the results of uniaxial tests and test forming of Ti–6Al–4V titanium alloy. It is shown that test forming used to identify the material model provides much more appropriate results with the evaluation error reduced from ~20 % (when identifying the model based on the results of standard uniaxial mechanical tests) to ~3 %.
About the Authors
A. A. KruglovRussian Federation
Cand. Sci. (Tech.), Associate professor of the Department of computer engineering and cybernetics, Ufa State Petroleum Technological University (USPTU) (450062, Russia, Ufa, Kosmonavtov, 1); Senior researcher of the Institute for Metals Superplasticity Problems, Russian Academy of Sciences (450001, Russia, Ufa, Khalturina, 39)
V. R. Ganieva
Russian Federation
Senior lecture of the same Department USUOP
O. P. Tulupova
Russian Federation
Post-graduate student of the same Department USUOP
F. U. Enikeev
Russian Federation
Dr. Sci. (Tech.), Prof., Heat of the same Department USUOP
References
1. Backofen W.A., Turner I.R., Avery D.H. Superplasticity in an Al Zn alloy // Trans. ASM. 1964. Vol. 57. P. 980—990.
2. Cornfield G.G., Johnson R.H. The forming of superplastic sheet materials // Int. J. Mech. Sci. 1970. Vol. 12. P. 479—490.
3. Смирнов О.М. Обработка металлов давлением в состоянии сверхпластичности. М.: Машиностроение, 1979.
4. Paton N.E., Hamilton C.H. (Eds.). Superplastic forming of structural alloys. Warrendale, PA: TMS-AIME, 1982.
5. Padmanabhan K.A., Vasin R.A., Enikeev F.U. Superplastic Flow: Phenomenology and mechanics. Berlin-Heidelberg: Springer-Verlag, 2001.
6. Чумаченко E.H., Смирнов O.M., Цепин M.A. Сверхпластичность: материалы, теория, технологии. M.: КомКнига, 2005.
7. Jarrar F.S., Abu-Farha F.K., Hector Jr. L.G., Khraisheh M.K. Simulation of high-temperature AA5083 bulge forming with a hardening/softening material model // J. Mater. Eng. Perform. 2009. Vol. 18. No. 7. P. 863—870.
8. Aksenov S.A., Zakhariev I.Y., Kolesnikov A.V., Osipov S.A. Characterization of superplastic materials by results of free bulging tests// Mater. Sci. Forum. 2016. Vol. 838— 839. P. 552— 556. DOI: 10.4028/www.scientific.net/MSF. 838—839.552.
9. Tsuzuku T. Superplastic forming of aerospace metallic materials // Mater. Sci. Forum. 1999. Vol. 304—306. P. 831—836.
10. Sato E., Sawai S., Uesugi K., Takami T., Furukawa K., Kamada M., Kondo M. Superplastic titanium tanks for propulsion system of satellites // Mater. Sci. Forum. 2007. Vol. 551—552. P. 43—48.
11. Beck W., Duong L., Rogall H. Titan 6-4 hemispheres for SCA system of Ariane 5 // Mat.- Wiss. U. Werkstofftech. 2008. Vol. 39. No. 4—5. P. 293—297. DOI: 10.1002/mawe.200800292.
12. Jovane F. An approximate analysis of the superplastic forming of a thin circular diaphragm: theory and experiments // Int. J. Mech. Sci. 1968. Vol. 10. No. 5. P. 403—427.
13. Belk J.A. Quantitative model of the blow-forming of spherical surfaces in superplastic sheet metal // Int. J. Mech. Sci. 1975. Vol. 17. P. 505—511.
14. Enikeev F.U., Kruglov A.A. An analysis of the superplastic forming of a thin circular diaphragm // Int. J. Mech. Sci. 1995. Vol. 37. P. 473—483.
15. Kitaeva D.A., Rudaev Ya.I. On the threshold stress in superplasticity // Russ. J. Appl. Phys. Tech. Phys. 2014. Vol. 59. No. 11. P. 1616—1619.
16. Жеребцов Ю.В., Ганиева В.Р., Еникеев Ф.У. Расчет продолжительности процесса свободной формовки листового проката в цилиндрическую матрицу в состоянии сверхпластичности // Технол. машиностроения. 2011. No. 8. С. 11—18.
17. Chen Y., Kibble K., Hall R., Huang X. Numerical analysis of superplastic blow forming of Ti—6Al—4V alloys // Mater. Design. 2001. Vol. 22. P. 679—685.
18. O’Brien M.J., Bremen H.F., Furukawa M., Horita Z., Langdon T.G. A finite element analysis of the superplastic forming of an aluminum alloy processed by ECAP // Mater. Sci. Eng. 2007. Vol. A456. P. 236—242.
19. Giuliano G., Franchitti S. On the evaluation of superplastic characteristics using the finite element method // Int. J. Machine Tools & Manufacture. 2007. Vol. 47. P. 471—476.
20. Hojjati M.H., Zoorabadi M., Hosseinipour S.J. Optimization of superplastic hydroforming process of Aluminium alloy 5083 // J. Mater. Process. Technol. 2008. Vol. 205. P. 482—488.
21. Enikeev F.U. Mathematical modeling of processes of pressure treatment of industrial titanium alloys of the superplasticity state // Russ. J. Non-Ferr. Met. 2008. Vol. 49. No. 1. P. 34—41.
22. Perzyna P. Fundamental problems in viscoplasticity // Adv. Appl. Mech. 1966. No. 9. P. 243—377.
23. Bonet J., Gil A., Wood R.D., Said R., Curtis R.V. Simulating superplastic forming // Comput. Methods Appl. Mech. Eng. 2006. Vol. 195. Р. 6580—6603.
24. Akhunova A.H., Dmitriev S.V., Kruglov A.A., Safiullin R.V. Constitutive relations for superplastic flow modeling from two axial loading experiments // Key Eng. Mater. 2010. Vol. 433. P. 319—323.
25. Ganieva V.R., Lyubimov A.S., Kutlueva A.I., Enikeev F.U. Unbiased estimates of the parameter rate sensitivity of superplastic materials // Russ. J. Non-Ferr. Met. 2012. No. 3. P. 250—254.
Review
For citations:
Kruglov A.A., Ganieva V.R., Tulupova O.P., Enikeev F.U. Methods to calculate the time of thin circular membrane superplastic forming. Izvestiya. Non-Ferrous Metallurgy. 2017;(2):66-75. (In Russ.) https://doi.org/10.17073/0021-3438-2017-2-66-75