Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Improvement of arsenic trisulfide precipitation from sulfuric acid production flush waters at copper works

https://doi.org/10.17073/0021-3438-2017-2-36-42

Abstract

The sulfide method for purification of sulfuric acid production flush waters have such disadvantages as the formation of finely dispersed (0,3 to 1,5 μm particle size) difficult-to-filter precipitates of arsenic sulfide (III) and the risk of hydrogen sulfide release into the atmosphere in case of sodium hydrosulfide overdose. The article studies the process of arsenic sulfide sols coagulation in order to develop a more effective and fast precipitate filtration technology. The article determines filtering rates in various modes of sodium hydrosulfide feeding, and dependence of the settling and filtering rates on the presence of coagulants – iron sulfate and aluminum sulfate. It was found that the implementation of dispersed feeding of sodium hydrosulfide during the arsenic sulfide precipitation in combination with the use of inorganic coagulant – ferric sulfate (III) would make it possible to increase the size of As2S3 particles by several times, and to increase filtering and settling rates of pulps.

About the Authors

S. V. Mamyachenkov
Ural Federal University named after first President of Russia B.N. Yeltsin
Russian Federation

Dr. Sci. (Eng.), Professor of the Department of metallurgy of heavy non-ferrous metals of Ural Federal University named after first President of Russia B.N. Yeltsin (620002, Russia, Yekaterinburg, Mira str., 19)



O. S. Anisimova
Ural Federal University named after first President of Russia B.N. Yeltsin
Russian Federation
Cand. Sci. (Eng.), Associate professor of the same Department


D. A. Kostina
Ural Federal University named after first President of Russia B.N. Yeltsin
Russian Federation
Student of the same Department


References

1. Набойченко С.С., Мамяченков С.В., Карелов С.В. Мышьяк в цветной металлургии. Екатеринбург: УрО РАН, 2004.

2. Piret N.L. The removal and safe disposal of arsenic in copper processing // JOM: J. Miner., Met. Mater. Soc. 1999. Vol. 51. No. 9. P. 16—17.

3. Wang H.J., Gong W.X., Liu R.P., Liu H.J., Qu J.H. Treatment of high arsenic content wastewater by a combined physical—chemical process // Colloid. Surf. 2011. Vol. 379. P. 116—120.

4. Dalewski F. Removing arsenic from copper smelter gases // JOM: J. Miner., Met. Mater. Soc. 1999. Vol. 51. No 9. P. 24—26.

5. Vircikova E., Palfy P., Molnar L., Lech P. As(III) elimination from solutions and As- precipitates characteristic // Miner. Slov. 1996. Vol. 28. No 5. P. 406—408.

6. Шубинок А.В. О выводе мышьяка (III) из растворов мокрой очистки газов // Комплексное использование минерального сырья. 1992. No. 5. С. 59—63.

7. Mondal P., Majumder C.B., Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments // J. Hazard. Mater. 2006. Vol. 137. P. 464–479.

8. Bothe J.V., Brown P.W. Arsenic immobilization by calcium arsenate formation // Environ. Sci. Technol. 1999. Vol. 33. Р. 3806—3811.

9. Исабаев С.М., Пашинкин А.С., Мильке Э.Г., Жамбеков М.И. Физико-химические основы сульфидирования мышьяксодержащих соединений. Алма-Ата: Наука, 1986.

10. Meltem B.B., Aysegul P. Determination of arsenic removal efficiency by ferric ions using response surface methodology // J. Hazard. Mater. 2009. Vol. 166. P. 796—801.

11. Papassiopi N., Vircfkova E., Nenov V., Kontopoulos A. Removal and fixation of arsenic in the form of ferric arsenates. Three parallel experimental studies // Hydrometallurgy. 1996. Vol. 41. P. 241—253.

12. Li Guo, Yaguang Du, Qiushi Yi, Dunshun Li, Longwen Cao, Dongyun Du. Efficient removal of arsenic from «dirty acid» wastewater by using a novel immersed multi-start distributor for sulphide feeding // Separat. Purific. Technol. 2015. Vol. 142. Р. 209—214.

13. Lewis A., Hille R.P. An exploration into the sulphide precipitation method and its effect on metal sulphide removal // Hydrometallurgy. 2006. Vol. 81. Р. 197—204

14. Lewis A.E. Review of metal sulphide precipitation // Hydrometallurgy. 2010. Vol. 104. Р. 222—234.

15. Raman G., Gnanam F.D., Ramasamy P. Gel grown single crystals of arsenic trisulphide // J.Crystal Growth. 1986. Vol. 75. No. 3. P. 471—472.

16. Mokone T.P., Hille R.P., Lewis A.E. Effect of solution chemistry on particle characteristics during metal sulfide precipitation // J. Colloid. Int. Sci. 2010. Vol. 351. Р. 10—18.

17. Фридрихсберг Д.А. Курс коллоидной химии. СПб.: Лань, 2010.

18. Junhao Jiang, Jinke Gong, Weiqiang Liu, Tao Chen, Chao Zhong. Analysis on filtration characteristic of wall-flow filter for ash deposition in cake // J. Aerosol. Sci. 2016. Vol. 95. P. 73—83.

19. Ma Wei, Ma Wenji, Ma Rongjun. Arsenic removal by sulfidation sedimentation in magnetic field // Trans. Nonferr. Met. Soc. 1998. Vol. 8. No. 3. P. 529—532.

20. Shalabh S., Qiankun W., Dimitrios F., Demopoulos G.P. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric- pressure conditions // Metall. Mater. Trans. 2006. Vol. 37. No. 2. P.189—198.

21. Белоглазов И.Н., Голубев В.О. Основы расчета фильтрационных процессов. М.: Руда и металлы, 2002.

22. Javorskyj I., Leśkow J., Kravets I., Isayev I., Gajecka E. Linear filtration methods for statistical analysis of periodically correlated random processes. Pt 1: Coherent and component methods and their generalization // Signal Process. 2012. Vol. 92. No. 7. P. 1559—1566.


Review

For citations:


Mamyachenkov S.V., Anisimova O.S., Kostina D.A. Improvement of arsenic trisulfide precipitation from sulfuric acid production flush waters at copper works. Izvestiya. Non-Ferrous Metallurgy. 2017;(2):36-42. (In Russ.) https://doi.org/10.17073/0021-3438-2017-2-36-42

Views: 769


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)