Basic scheme of copper and zinc waste recycling in metallurgical brass production
https://doi.org/10.17073/0021-3438-2017-2-29-35
Abstract
The article proposes a recycling scheme for dusty waste generated during the metallurgical brass production with the use of two-stage leaching. During the first stage, when the dust is dissolved by a 0,5 mol/l sulfuric acid solution, a product solution containing the major amount of zinc ions (0,46 mol/l) and a small amount of copper ions (less than 0,02 mol/l) is obtained. Copper is sequentially electrochemically isolated from this solution, at a current density of 0,1 A/dm2, and then zinc is isolated at 5,0 A/dm2. The dry residue (cake) is subjected to copper-ammonia leaching, as a result of which all copper passes into the solution, and associated metals remain undissolved. In order to extract copper from the resulting solution, the liquid extraction by a 0,34 mol/l DH-510A solution in kerosene is used. Copper ions are extracted from the organic phase through re-extraction by a 2,0 mol/l sulfuric acid solution. The cathode copper is extracted from the obtained sulfuric acid electrolyte at current density of 1,5–2,0 A/dm2. The advantages of the proposed scheme are the increase in environmental friendliness through the use of solution recirculation at all stages of the process, as well as waste minimization through the entire process of dusty metallurgical sludge recycling.
Keywords
About the Authors
E. S. KondratyevaRussian Federation
Ph.D., Researcher of Technopark «Ekohimbiznes- 2000+» D. Mendeleyev University of Chemical Technology of Russia (125047, Russia, Moscow, Miusskaya sq. 9)
A. F. Gubin
Russian Federation
Ph.D., Leading researcher of Technopark «Ekohimbiznes- 2000+»
V. A. Kolesnikov
Russian Federation
Dr. Sci. (Tech.), Prof., Rector, D. Mendeleyev University of Chemical Technology of Russia
References
1. Dudeneya A.W.L., Chanb B.K.C., Bouzalakosc S., Huismand J.L. Management of waste and wastewater from mineral industry processes, especially leaching of sulphide resources: state of the art // Int. J. Min. Reclamat. Environ. 2013. Vol. 27. Iss. 1. P. 2—37.
2. Gorai B., Jana R.K., Premchand. Characteristics and utilisation of copper slag-a review // Resour. Conserv. Recycl. 2003. Vol. 39. P. 299—313.
3. Tuncuk A., Stazi V., Akcil A., Yazici E.Y., Deveci H. Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling // Miner. Eng. 2012. Vol. 25. P. 28—37.
4. Ramachandra S.R. Resource recovery and recycling from metallurgical wastes. Elsevier Sci., 2006.
5. Baba A.A., Ibrahim L., Adekola F.A., Bale R.B., Ghosh M.K., Sheik A.R., Pradhan S.R., Ayanda O.S., Folorunsho I.O. hydrometallurgical processing of manganese ores: A review // J. Miner. Mater. Character. Eng. 2014. Vol. 2. P. 230—247.
6. Касиков А.Г., Арешина Н.С., Багрова Е.Г. Способ извлечения меди из сульфатсодержащей пыли медного производства: Пат. 2348714 (РФ). 2009.
7. Тузов И.Н., Тимощенко А.Д. Комплекс для извлечения латуни, оксида цинка и оксида меди из шлака латунного литейного производства: Пат. 2415186 (РФ). 2010.
8. Jha M.K., Kumar V., Singh R.J. Review of hydrometallurgical recovery of zinc from industrial wastes // Resour. Conserv. Recycl. 2001. Vol. 33. P. 1—22.
9. Алкацева В.М. Принципиальная схема переработки цинковых кеков // Изв. вузов. Цвет. металлургия.2014. No. 3. С. 28—32.
10. Коростелев П.П. Титриметрический и гравиметрический анализ в металлургии: Справочник. М.: Металлургия, 1985.
11. Кондратьева Е.С., Губин А.Ф., Колесников В.А. Экстракция никеля из аммиачно- сульфатных растворов β-дикетоном ДХ-510А // Хим. технология. 2013. No. 12. С. 745—751.
12. Гель В.И., Парецкий В.М., Самолюк О.В., Родионов В.Б. Исследования способов переработки тонкодисперсных металлургических отходов завода по производству катодной меди из вторичного сырья. URL: http://www.splavmet.net/st1.htm (дата обращения 02.11.2015).
13. Кондратьева Е.С., Губин А.Ф., Колесников В.А., Кисиленко П.Н., Ильин В.И. Электрохимическое извлечение цинка из твердых отходов металлургического предприятия // Хим. пром-сть сегодня. 2013. No. 1. С. 35—39.
14. Sun Z.H.I., Xiao Y., Sietsma J., Agterhuis H., Visser G., Yang Y. Selective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution // Hydrometallurgy. 2015. Vol. 152. P. 91—99.
15. Zhu T. Extraction and ion exchange // Beijing: Metallurgical Industry Press. Chinese. 2005. P. 280—281.
16. Чекмарев А.М., Кондратьева Е.С., Колесников В.А., Губин А.Ф. Исследования по выбору экстрагента для извлечения ионов меди (II) // Докл. АН. 2015. Т. 464. No. 1. С. 44—46.
17. Kuznetsov G.I., Pushkov A.A., Kosogorov A.V. Industrial application of centrek centrifugal extractors // Proc. of Int. Solvent Extraction Conf. (ISEC). Johannesburg, 2002. P. 1322.
Review
For citations:
Kondratyeva E.S., Gubin A.F., Kolesnikov V.A. Basic scheme of copper and zinc waste recycling in metallurgical brass production. Izvestiya. Non-Ferrous Metallurgy. 2017;(2):29-35. (In Russ.) https://doi.org/10.17073/0021-3438-2017-2-29-35