Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

STUDY OF CORROSION RATE AND FEATURES OF NANOCTRUCTURED ALUMINUM ALLOY SAMPLES IN HYDROGEN SULFIDE MEDIUM

https://doi.org/10.17073/0021-3438-2017-1-76-83

Abstract

The study determines corrosion rate and covers corrosion damage specifics of AK4-1 aluminum alloy samples in the NACE hydrogen sulfide solution. The alloy was studied in an ultrafine state as compared to the coarse-grained state obtained after standard T6 treatment (hardening + ageing). The alloy was nanostructured by equal-channel angular pressing (ECAP). It was shown that the alloy corrosion rate after ECAP was 1,9 times higher than after T6 treatment. Thus, general corrosion occurred in the alloy after ECAP, while in the T6 state pit corrosion occurred in the alloy in addition to general corrosion. The corrosive effect had a greater impact on surface roughness of samples made of AK4-1 alloy after ECAP as compared to samples after T6 treatment.

About the Authors

G. V. Klevtsov
Togliatti State University
Russian Federation

Dr. Sci. (Tech.), prof., Department of nanotechnologies, materials science and mechanics (NMSM), 

445667, Toglyatti, Belorusskaya str., 14



R. Z. Valiev
Ufa State Aviation Technology University
Russian Federation

Dr. Sci. (Phys.-Math.), prof., head of Research Institute of Physics of Advanced Materials, 

450063, Ufa, K. Marks str., 12



V. M. Kushnarenko
Orenburg State University
Russian Federation

Dr. Sci. (Tech.)., prof., Department of mechanics, 

460018, Orenburg, Pobedy pr., 13



N. A. Klevtsova
Togliatti State University
Russian Federation
Dr. Sci. (Tech.), prof., Department of NMSM


E. D. Merson
Togliatti State University
Russian Federation
postgraduate student, Department of NMSM


I. N. Pigaleva
Togliatti State University
Russian Federation
engineer, Department of NMSM


References

1. Valiev R.Z., Aleksandrov I.V. Ob’emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva [Volume nanostructed metallic materials: receiving, structure and properties]. Moscow: Akademkniga, 2007.

2. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: Fundamentals and applications. Hoboken, New Jersey: TMS, John Wiley & Sons, Inc., 2014.

3. Gusev A.I., Rempel’ A.A. Nanokristallicheskie materialy [Nanocrystalline materials]. Moscow: Fizmatlit, 2000.

4. Valiev R.Z. Sozdanie nanostrukturnykh metallov i splavov s unikal’nymi svoistvami, ispol’zuya intensivnye plasticheskie deformatsii [Creation of nanostructured metals and alloys with unique properties using intensive plastic deformation]. Rossiiskie nanotekhnologii. 2006. Vol. 1. No. 1—2. P. 208—216.

5. Andrievskiy R.A. Nanostrukturnye materialy — sostoyanie razrabotok i perspektivy [Nanostructured materials — state and prospects of development]. Perspektivnye materialy. 2001. No. 6. P. 5—11.

6. Beloglazov I.N., Syrkov A.G. Nanostrukturirovannye metally i materialy: aktual’nost’ problematiki i perspektivnost’ issledovanii [Nanostructuring metals and materials: relevant issues and advanced studies]. Tsvetnye metally. 2005. No. 9. P. 4—5.

7. Hadzima B., Janeček M., Estrin Y., Kim H.S. Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater. Sci. Eng. A. 2007. Vol. 462. Р. 243—247.

8. Ralston K.D., Birbils N., Davies C.H.J. Revealing the relationship between grain size and corrosion rate of metals. Scr. Mater. 2010. Vol. 63. Р. 1201—1204.

9. Liu L., Li Y., Wang F.H. Electrochemical corrosion behavior of nanocrystalline materials: A review. J. Mater. Sci. Technol. 2010. Vol. 26. Р. 1—14.

10. Song Dan, Ma Ai-bin, Jiang Jing-hua, Lin Pin-hua, Yang Dong-hui. Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP. Trans. Nonferr. Met. Soc. China. 2009. Vol. 19. Р. 1065—1070.

11. Vinogradov А., Mimaki T., Hashimoto S., Valiev R. On the corrosion behaviour of ultrafine-grained copper. Scr. Mater. 1999. Vol. 41. Р. 319—326.

12. Rofagha A., Langer R., El-Sherik A.M., Erb U., Palumbo G., Aust K.T. The corrosion behaviour of nanocrystalline nickel. Scr. Metall. Mater. 1991. Vol. 25. Р. 2867—2872.

13. Balyanov A., Kutnyakova J., Amirkhanova N.A., Stolyarov V.V., Valiev R.Z., Liao X.Z., Zhao Y.H., Jiang Y.B., Xu H.F., Lowe T.C., Zhu Y.T. Corrosion resistance of ultra-fine grained Ti. Scr. Mater. 2004. Vol. 51. Р. 225—229.

14. Dan Song, Aibin Ma, Jinghua Jiang, Pinghua Lin. Overview on the corrosion behavior of ultra-fine grained materials fabricated by equal-channel angular pressing. Mater. Sci. Forum. 2011. Vols. 667—669. Р. 113—1136.

15. Klevtsov G.V., Valiev R.Z., Islamgaliev R.K., Klevtsova N.A., Khafizova E.D., Merson E.D., Pigaleva I.N. Prochnost’ i mekhanizm razrusheniya aluminievogo splava AK4-1 v submikrokristallicheskom sostoyanii pri staticheskom i udarnom nagruzheniyakh [Strength and fracture mechanism of aluminum alloy AK4-1 in sub microcrystalline state under static and impact loadings]. Fundamental’nye issledovaniya. 2013. No. 8 (2). P. 281—285.

16. Islamgaliev R.K., Nesterov K.M., Khafizova E.D., Ganeev A.V., Golubovskii E.R., Volkov M.E. Prochnost’ i ustalost’ ul’tramelkozernistogo alyuminievogo splava AK4-1 [Strength and fatigue of ultra-fine grained aluminum AK4-1 alloy]. Vestnik UGATU. Mashinostroenie. 2012. Vol. 16. No. 8 (53). P. 104—109.

17. Klevtsov G.V., Merson E.D. O vozmozhnosti ispol’zovaniya konfokal’nogo lazernogo skaniruyushchego mikroskopa dlya issledovaniya mikrorel’efa poverkhnosti razrusheniya metallicheskikh materialov [On the possibility of using confocal laser microscope to study the micro relief of the fracture surface of metallic materials]. Fundamental’nye issledovaniya. 2012. No. 11 (5). P. 1185—1189.


Review

For citations:


Klevtsov G.V., Valiev R.Z., Kushnarenko V.M., Klevtsova N.A., Merson E.D., Pigaleva I.N. STUDY OF CORROSION RATE AND FEATURES OF NANOCTRUCTURED ALUMINUM ALLOY SAMPLES IN HYDROGEN SULFIDE MEDIUM. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):76-83. (In Russ.) https://doi.org/10.17073/0021-3438-2017-1-76-83

Views: 700


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)