Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

RESEARCH ON THE EFFECT OF AD1M ALLOY ANISOTROPY ON THE GEOMETRY OF HOLLOW CYLINDRICAL PARTS IN DRAWING

https://doi.org/10.17073/0021-3438-2017-1-61-68

Abstract

The paper covers the effect of material anisotropy on the nature of deformation and geometrical dimensions of the finished capsule made of AD1M aluminum alloy in the drawing process. Metallographic, X-ray diffraction, full-scale production, and computer studies were conducted and the mechanical properties of the material were determined in order to identify the factors of the material anisotropy. Finite element analysis of the drawing process was conducted, where isotropic and macroanisotropic models, together with a model which factored in the microstructure of AD1M aluminum alloy, were considered as the treated material. It was found that only the macroanisotropic model and, to a greater extent, the finite element model which factored in the material microstructure in contrast to the isotropic model, allowed studying the earing process. It was shown that factoring in the sheet material anisotropy in the manufacture of hollow cylindrical parts by die stamping made it possible to determine the nature of metal flow more accurately and realistically and thus determine the final geometry of produced parts and consequently to create a stable process and improve product performance.

About the Authors

S. V. Voronin
Samara National Research University n.a. acad. S.P. Korolev (Samara University)
Russian Federation

Cand. Sci. (Tech.), associate professor of the Department of metal technologies and aviation material science,

443086, Samara, Moskovskoe shosse, 34



V. D. Ushin
Samara National Research University n.a. acad. S.P. Korolev (Samara University)
Russian Federation
Dr. Sci. (Tech.), prof., Department of metal technologies and aviation material science


References

1. GOST 11701-84. Metally. Metody ispytanii na rastyazhenie tonkikh listov i lent [Metals. Method of tensile testing of thin sheets and strips]. Moscow: Izdatel’stvo standartov, 1991.

2. Grechnikov F.V., Erisov Ya.A. The theoretical principles of sheet metal forming processes intensification based on anisotropy. Appl. Mech. Mater. 2015. Vol. 770. P. 258—263. DOI: 10.4028/www.scientific.net/AMM.770.258.

3. Grechnikov F.V., Antipov V.V., Erisov Ya.A., Grechnikova A.F. A manufacturability improvement of glass fiber reinforced aluminum laminate by forming an effective crystallographic texture in V95 alloy sheets. Russ. J. NonFerr. Met. 2015. Vol. 56. No. 1. P. 39—43.

4. Gorelik Yu.A. Rentgenograficheskii i elektronno-opticheskii analiz [X-ray and electron-optical analysis]. Moscow: Izdatel’stvo MISIS, 2002.

5. Oudjene M., Penazzi L., Batoz J.-L. Towards the three-dimensional FE analysis of rapid prototyping tools for sheet metal stamping process. Finite Element Anal. 2007. No. 43. P. 611—619. DOI: 10.1016/j.finel.2006.12.012.

6. Khelifa M., Oudjene M., Khennane A. Fracture in sheet metal forming: Effect of ductile damage evolution. Comput. Struct. 2007. No. 85. P. 205—212. DOI: 10.1016/j.compstruc.2006.08.053.

7. Colgan M., Monaghan J. Deep drawing process: analysis and experiment. J. Mater. Process. Technol. 2003. No. 132. P. 35—41. DOI: 10.1016/S0924-0136(02)00253-4.

8. Firat М. A numerical analysis of sheet metal formability for automotive stamping applications. Comput. Mater. Sci. 2008. No. 43. P. 802—811. DOI: 10.1016/j.commatsci.2008.01.068.

9. Hussaini S.M., Gupta A.K., Singh S.K. Investigation of material model for simulations of deep drawing in dynamic strain aging region. Procedia Mater. Sci. 2014. No. 6. P. 1157—1160.

10. Meyer A., Wietbrock B., Hirt G. Increasing of the drawing depth using tailor rolled blanks — Numerical and experimental analysis. Int. J. Mach. Tools Manuf. 2008. No. 48. P. 522—531. DOI: 10.1016/j.ijmachtools.2007.08.003.

11. Padmanabhan R., Oliveira M.C., Menezes L.F. Deep drawing of aluminium — steel tailor-welded blanks. Mater. and Design. 2008. No. 29. P. 154—160. DOI: 10.1016/j.matdes.2006.11.007.

12. Neto D.M., Oliveira M.C., Alves J.L., Menezes L.F. Influence of the plastic anisotropy modelling in the reverse deep drawing process simulation. Mater. and Design. 2014. Vol. 60. P. 368—379. DOI: 10.1016/j.matdes.2014.04.008.

13. Ren L.M., Zhang S.H., Palumbo G., Sorgente D., Tricarico L. Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets. Mater. Sci. Eng. A. 2009. Vol. 499. Iss. 1—2. P. 40—44. DOI: 10.1016/j.msea.2007.11.132.

14. Voronin S.V., Ushin V.D., Bunova G.Z. Computer simulation of the drawing process of cylindrical cups taking into account the microstructure of the 5056 alloy. Appl. Mech. Mater. 2015. No. 698. P. 395—400.

15. Panin V.E., Grinyaev Yu.V., Danilov V.I. Strukturnye urovni plasticheskoi deformatsii i razrusheniya [Structural levels of plastic deformation and fracture]. Novosibirsk: Nauka, 1990.


Review

For citations:


Voronin S.V., Ushin V.D. RESEARCH ON THE EFFECT OF AD1M ALLOY ANISOTROPY ON THE GEOMETRY OF HOLLOW CYLINDRICAL PARTS IN DRAWING. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):61-68. (In Russ.) https://doi.org/10.17073/0021-3438-2017-1-61-68

Views: 687


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)