DETERMINATION OF HEAT TRANSFER COEFFICIENT BETWEEN ALUMINUM CASTING AND GRAPHITE MOLD
https://doi.org/10.17073/0021-3438-2017-1-40-52
Abstract
About the Authors
V. E. BazhenovRussian Federation
Cand. Sci. (Tech.), senior lecturer, Department of foundry technologies and material art working (FT&MAW),
119049, Moscow, Leninskii pr., 4
A. V. Koltygin
Russian Federation
Cand. Sci. (Tech.), assistant prof., Department of FT&MAW
Yu. V. Tselovalnik
Russian Federation
student, Department of FT&MAW
A. V. Sannikov
Russian Federation
Cand. Sci. (Tech.), section foreman, Engineering Centre «Foundry technologies and materials»
References
1. O’Connor S. Titanium rammed graphite castings. Adv. Mater. Processes. 2008. Vol. 166. No. 3. P. 29—31.
2. O’Connor S. Titanium rammed graphite castings for military applications. AMMTIAC Quarterly. 2007. Vol. 2. No. 1. P. 3—7.
3. Fadeev A.V., Bazhenov V.E., Belov V.D., Petrovskiy P.V., Pavlinich S.P., Alikin P.V. Osobennosti izgotovleniya tonkostennykh otlivok gazoturbinnogo dvigatelya iz titanovykh splavov metodom bezmodel’noi tekhnologii [Model-free technology production specifics of thin-walled turbine engine titanium castings]. Liteishchik Rossii. 2014. No. 2. P. 23—26.
4. Fadeev A.V., Belov V.D., Bazhenov V.E., Koltygin A.V., Petrovskiy P.V., Sannikov A.V., Nikitina A.A., Pavlinich S.P., Alikin P.V. Osobennosti izgotovleniya krupnogabaritnykh tonkostennykh otlivok gazoturbinnogo dvigatelya iz titanovykh splavov po bezmodel’noi tekhnologii [Specifics of manufacturing of large-sized thin-walled turbine engine titanium castings by the model-free technology]. Liteishchik Rossii. 2014. No. 9. P. 14—19.
5. Jia L., Xu D., Li M., Guo J., Fu H. Casting defects of Ti—6Al—4V alloy in vertical centrifugal casting processes with graphite molds. Met. Mater. Int. 2012. Vol. 18. No. 1. P. 55—61.
6. Zanchuk V. Graphite molds cast zinc alloys. Adv. Mater. Processes. 2004. Vol. 162. No. 11. P. 66—67.
7. Zanchuk V. ZA-12 alloy casting with graphite molds: Economical precision parts, reduced time-to-market. Die Cast. Eng. 2006. No. 1. P. 38—41.
8. Mysov G.V. Use of permanent graphite molds for obtaining a bronze casting. Chem. Petrol. Eng. 1975. Vol. 11. No. 11. P. 1038—1038.
9. Baumeister G., Buqezi-Ahmeti D., Glaser J., RitzhauptKleissl H.-J. New approaches in microcasting: permanent mold casting and composite casting. Microsystem Technol. 2011. Vol. 17. No. 2. P. 289—300.
10. Chen W.-C., Teng F.-Y., Hung C.-C. Characterization of Ni—Cr alloys using different casting techniques and molds. Mater. Sci. Eng. C. 2014. Vol. 35. P. 231—238.
11. Nee A.Y.C. Handbook of manufacturing engineering and technology. London: Springer, 2015.
12. Pattnaik S., Karunakar D.B., Jha P.K. Developments in investment casting process: A review. J. Mater. Process. Technol. 2012. Vol. 212. No. 11. P. 2332—2348.
13. Kim M.-G., Kim S.K., Kim Y.-J. Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys. Mater. Trans. 2002. Vol. 43. No. 4. P. 745—750.
14. Kuang J.P., Harding R.A., Campbell J. Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys. Mater. Sci. Technol. 2000. Vol. 16. No. 9. P. 1007—1016.
15. Prabhu K.N., Suresha K.M. Effect of superheat, mold, and casting materials on the metal/mold interfacial heat transfer during solidification in graphite-lined permanent molds. J. Mater. Eng. Perform. 2004. Vol. 13. No. 5. P. 619—626.
16. Wang D., Zhou C., Xu G., Huaiyuan A. Heat transfer behavior of top side-pouring twin-roll casting. J. Mater. Process. Technol. 2014. Vol. 214. P. 1275—1284.
17. Griffiths W.D., Kawai K. The effect of increased pressure on interfacial heat transfer in the aluminium gravity die casting process. J. Mater. Sci. 2010. Vol. 45. No. 9. P. 2330—2339.
18. Sun Z., Hu H., Niu X. Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60. J. Mater. Process. Technol. 2011. Vol. 211. P. 1432—1440.
19. Nishida Y., Droste W., Engler S. The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap. Metall. Trans. B. 1986. Vol. 17B. P. 833—844.
20. Tikhomirov M.D. Modelirovanie teplovykh i usadochnykh protsessov pri zatverdevanii otlivok iz vysokoprochnykh alyuminievykh splavov i razrabotka sistemy komp’yuternogo analiza liteinoi tekhnologii [Simulation of thermal and shrinkage processes during solidification and developing of computer analysis model of cast technology]: Abstract of the dissertation of the PhD. St. Petersburg: SPbSPU, 2004.
21. Prabhu K.N., Griffiths W.D. Assessment of metal/mould interfacial heat transfer during solidification of cast iron. Mater. Sci. Forum. 2000. Vol. 329—330. P. 455—460.
22. Bouchard D., Leboeuf S., Nadeau J.P., Guthrie R.I.L., Isac M. Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates. J. Mater. Sci. 2009. Vol. 44. No. 8. P. 1923—1933.
23. Prasad A., Bainbridge I.F. experimental determination of heat transfer within the metal/mold gap in a DC casting mold. Part II. Effect of casting metal, mold material, and other casting parameters. Metall. Mater. Trans. A. 2013. Vol. 44. No. 7. P. 3099—3113.
24. Lu S.-L., Xiao F.-R., Zhang S.-J., Mao Y.-W., Liao B. Simulation study on the centrifugal casting wet-type cylinder liner based on ProCAST. Appl. Therm. Eng. 2014. Vol. 73. P. 512—521.
25. Prabhu K.N., Chowdary B., Venkataraman N. Casting/ mold thermal contact heat transfer during solidification of Al—Cu—Si alloy (LM 21) plates in thick and thin molds. J. Mater. Eng. Perform. 2005. Vol. 14. No. 5. P. 604—609.
26. Sutaria M., Gada V.H., Sharma A., Ravi B. Computation of feed-paths for casting solidification using level-setmethod. J. Mater. Process. Technol. 2012. Vol. 212. P. 1236—1249.
27. Baghani A., Davami P., Varahram N., Shabani M.O. Investigation on the effect of mold constraints and cooling rate on residual stress during the sand-casting process of 1086 steel by employing a thermomechanical model. Metall. Mater. Trans. B. 2014. Vol. 45. P. 1157—1169.
28. Chen L., Wang Y., Peng L., Fu P., Jiang H. Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand. Exp. Therm. Fluid Sci. 2014. Vol. 54. P. 196—203.
29. Palumbo G., Piglionico V., Piccininni A., Guglielmi P., Sorgente D., Tricarico L. Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis. Appl. Therm. Eng. 2015. Vol. 78. P. 682—694.
30. Bertelli F., Cheung N., Garcia A. Inward solidification of cylinders: Reversal in the growth rate and microstructure evolution. Appl. Therm. Eng. 2013. Vol. 61. P. 577—582.
31. Martorano M.A., Capocchi J.D.T. Heat transfer coefficient at the metal-mould interface in the unidirectional solidification of Cu—8%Sn alloys. Int. J. Heat Mass Transfer. 2000. Vol. 43. P. 2541—2552.
32. Griffiths W.D. A model of the interfacial heat-transfer coefficient during unidirectional solidification of an aluminum alloy. Metall. Mater. Trans. B. 2000. Vol. 31B. No. 2. P. 285—295.
33. Zhmurikov E.I., Savchenko I.V., Stankus S.V., Tecchio L. Izmereniya teplofizicheskikh svoistv grafitovykh kompozitov dlya konvertora neitronnoi misheni [Measurements of thermal properties of graphite composites for neutron target converter]. Vestnik NGU. Seriya: Fizika. 2011. Vol. 6. No. 2. P. 77—84.
34. Powell R.W., Ho C.Y., Liley P.E. Thermal conductivity of selected materials NSRDS 8 (Report). Washington D.C.: US Government Printing Office, 1966.
35. Chirkin V.S. Teplofizicheskie svoistva materialov [Thermal properties of materials]. Moscow: Fizmatgiz, 1959.
36. Huggins R.A. Energy storage: fundamentals, materials and applications. Heidelberg: Springer, 2015.
37. Larikov L.N., Yurchenko Yu.F. Teplovye svoistva metallov i splavov [The thermal properties of metals and alloys]. Kiev: Naukova dumka, 1985.
38. Martienssen W., Warlimont H. Springer handbook of condensed matter and materials data. Heidelberg: Springer, 2006.
39. Taylor R.E., Groot H. Thermophysical properties of POCO graphite: AFOSR-TR-78-1375 (Report). Indiana: Purdue University Lafayette Properties Research Laboratory, 1978.
Review
For citations:
Bazhenov V.E., Koltygin A.V., Tselovalnik Yu.V., Sannikov A.V. DETERMINATION OF HEAT TRANSFER COEFFICIENT BETWEEN ALUMINUM CASTING AND GRAPHITE MOLD. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):40-52. (In Russ.) https://doi.org/10.17073/0021-3438-2017-1-40-52