Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

DETERMINATION OF HEAT TRANSFER COEFFICIENT BETWEEN ALUMINUM CASTING AND GRAPHITE MOLD

https://doi.org/10.17073/0021-3438-2017-1-40-52

Abstract

Graphite molds can be used to produce titanium, nickel, copper, aluminum and zinc castings. Using of the graphite molds provides a high cooling rate. Moreover no die coatings and lubricants are required. To get appropriate results of the casting process simulation in graphite molds it is necessary to know thermophysical properties of materials and boundary conditions such as interface heat transfer coefficients, but they are still unknown. The most important properties are heat transfer coefficient between casting and mold, and between mold parts and between mold and environment. The heat transfer coefficient h (iHTC – interface Heat Transfer Coefficient) was determined between cylindrical aluminium (99,99 % Al) casting and mold made of low-ash graphite. The mold was produced by milling graphite blocks on the CNC machine. The heat transfer coefficient was determined by minimizing the error function, representing the difference between the experimental and obtained by simulation temperature in the mold during pouring, solidification and cooling of the casting. The dependences of the iHTC between aluminium and graphite on the temperature of the casting surface and time elapsed from the start of pouring of the casting. Determined values of the heat transfer coefficient at metal temperatures 1000, 660, 619 and 190 °С are 1100, 4700, 700 and 100 W/(m2 ·К) respectively. Therefore, with decreasing of the melt temperature from 1000 °C (pouring temperature) to 660 °C (aluminium melting point), the heat transfer coefficient increases. After casting surface forming and lowering its temperature, the heat transfer coefficient decreases. Decrease of the iHTC at temperatures below 660 °C (lower the melting point) is associated primarily with the appearance of an air gap between the mold surface and casting surface as a result of linear shrinkage. The iHTC between the mold parts (graphite– graphite) is constant 1000 W/(m2 ·К). The heat transfer coefficient between graphite and the air environment is 12 W/(m2 ·К) at the mold surface temperature up to 600 °C.

About the Authors

V. E. Bazhenov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), senior lecturer, Department of foundry technologies and material art working (FT&MAW),

119049, Moscow, Leninskii pr., 4



A. V. Koltygin
National University of Science and Technology (NUST) «MISIS»
Russian Federation
Cand. Sci. (Tech.), assistant prof., Department of FT&MAW


Yu. V. Tselovalnik
National University of Science and Technology (NUST) «MISIS»
Russian Federation
student, Department of FT&MAW


A. V. Sannikov
National University of Science and Technology (NUST) «MISIS»
Russian Federation
Cand. Sci. (Tech.), section foreman, Engineering Centre «Foundry technologies and materials»


References

1. O’Connor S. Titanium rammed graphite castings. Adv. Mater. Processes. 2008. Vol. 166. No. 3. P. 29—31.

2. O’Connor S. Titanium rammed graphite castings for military applications. AMMTIAC Quarterly. 2007. Vol. 2. No. 1. P. 3—7.

3. Fadeev A.V., Bazhenov V.E., Belov V.D., Petrovskiy P.V., Pavlinich S.P., Alikin P.V. Osobennosti izgotovleniya tonkostennykh otlivok gazoturbinnogo dvigatelya iz titanovykh splavov metodom bezmodel’noi tekhnologii [Model-free technology production specifics of thin-walled turbine engine titanium castings]. Liteishchik Rossii. 2014. No. 2. P. 23—26.

4. Fadeev A.V., Belov V.D., Bazhenov V.E., Koltygin A.V., Petrovskiy P.V., Sannikov A.V., Nikitina A.A., Pavlinich S.P., Alikin P.V. Osobennosti izgotovleniya krupnogabaritnykh tonkostennykh otlivok gazoturbinnogo dvigatelya iz titanovykh splavov po bezmodel’noi tekhnologii [Specifics of manufacturing of large-sized thin-walled turbine engine titanium castings by the model-free technology]. Liteishchik Rossii. 2014. No. 9. P. 14—19.

5. Jia L., Xu D., Li M., Guo J., Fu H. Casting defects of Ti—6Al—4V alloy in vertical centrifugal casting processes with graphite molds. Met. Mater. Int. 2012. Vol. 18. No. 1. P. 55—61.

6. Zanchuk V. Graphite molds cast zinc alloys. Adv. Mater. Processes. 2004. Vol. 162. No. 11. P. 66—67.

7. Zanchuk V. ZA-12 alloy casting with graphite molds: Economical precision parts, reduced time-to-market. Die Cast. Eng. 2006. No. 1. P. 38—41.

8. Mysov G.V. Use of permanent graphite molds for obtaining a bronze casting. Chem. Petrol. Eng. 1975. Vol. 11. No. 11. P. 1038—1038.

9. Baumeister G., Buqezi-Ahmeti D., Glaser J., RitzhauptKleissl H.-J. New approaches in microcasting: permanent mold casting and composite casting. Microsystem Technol. 2011. Vol. 17. No. 2. P. 289—300.

10. Chen W.-C., Teng F.-Y., Hung C.-C. Characterization of Ni—Cr alloys using different casting techniques and molds. Mater. Sci. Eng. C. 2014. Vol. 35. P. 231—238.

11. Nee A.Y.C. Handbook of manufacturing engineering and technology. London: Springer, 2015.

12. Pattnaik S., Karunakar D.B., Jha P.K. Developments in investment casting process: A review. J. Mater. Process. Technol. 2012. Vol. 212. No. 11. P. 2332—2348.

13. Kim M.-G., Kim S.K., Kim Y.-J. Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys. Mater. Trans. 2002. Vol. 43. No. 4. P. 745—750.

14. Kuang J.P., Harding R.A., Campbell J. Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys. Mater. Sci. Technol. 2000. Vol. 16. No. 9. P. 1007—1016.

15. Prabhu K.N., Suresha K.M. Effect of superheat, mold, and casting materials on the metal/mold interfacial heat transfer during solidification in graphite-lined permanent molds. J. Mater. Eng. Perform. 2004. Vol. 13. No. 5. P. 619—626.

16. Wang D., Zhou C., Xu G., Huaiyuan A. Heat transfer behavior of top side-pouring twin-roll casting. J. Mater. Process. Technol. 2014. Vol. 214. P. 1275—1284.

17. Griffiths W.D., Kawai K. The effect of increased pressure on interfacial heat transfer in the aluminium gravity die casting process. J. Mater. Sci. 2010. Vol. 45. No. 9. P. 2330—2339.

18. Sun Z., Hu H., Niu X. Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60. J. Mater. Process. Technol. 2011. Vol. 211. P. 1432—1440.

19. Nishida Y., Droste W., Engler S. The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap. Metall. Trans. B. 1986. Vol. 17B. P. 833—844.

20. Tikhomirov M.D. Modelirovanie teplovykh i usadochnykh protsessov pri zatverdevanii otlivok iz vysokoprochnykh alyuminievykh splavov i razrabotka sistemy komp’yuternogo analiza liteinoi tekhnologii [Simulation of thermal and shrinkage processes during solidification and developing of computer analysis model of cast technology]: Abstract of the dissertation of the PhD. St. Petersburg: SPbSPU, 2004.

21. Prabhu K.N., Griffiths W.D. Assessment of metal/mould interfacial heat transfer during solidification of cast iron. Mater. Sci. Forum. 2000. Vol. 329—330. P. 455—460.

22. Bouchard D., Leboeuf S., Nadeau J.P., Guthrie R.I.L., Isac M. Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates. J. Mater. Sci. 2009. Vol. 44. No. 8. P. 1923—1933.

23. Prasad A., Bainbridge I.F. experimental determination of heat transfer within the metal/mold gap in a DC casting mold. Part II. Effect of casting metal, mold material, and other casting parameters. Metall. Mater. Trans. A. 2013. Vol. 44. No. 7. P. 3099—3113.

24. Lu S.-L., Xiao F.-R., Zhang S.-J., Mao Y.-W., Liao B. Simulation study on the centrifugal casting wet-type cylinder liner based on ProCAST. Appl. Therm. Eng. 2014. Vol. 73. P. 512—521.

25. Prabhu K.N., Chowdary B., Venkataraman N. Casting/ mold thermal contact heat transfer during solidification of Al—Cu—Si alloy (LM 21) plates in thick and thin molds. J. Mater. Eng. Perform. 2005. Vol. 14. No. 5. P. 604—609.

26. Sutaria M., Gada V.H., Sharma A., Ravi B. Computation of feed-paths for casting solidification using level-setmethod. J. Mater. Process. Technol. 2012. Vol. 212. P. 1236—1249.

27. Baghani A., Davami P., Varahram N., Shabani M.O. Investigation on the effect of mold constraints and cooling rate on residual stress during the sand-casting process of 1086 steel by employing a thermomechanical model. Metall. Mater. Trans. B. 2014. Vol. 45. P. 1157—1169.

28. Chen L., Wang Y., Peng L., Fu P., Jiang H. Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand. Exp. Therm. Fluid Sci. 2014. Vol. 54. P. 196—203.

29. Palumbo G., Piglionico V., Piccininni A., Guglielmi P., Sorgente D., Tricarico L. Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis. Appl. Therm. Eng. 2015. Vol. 78. P. 682—694.

30. Bertelli F., Cheung N., Garcia A. Inward solidification of cylinders: Reversal in the growth rate and microstructure evolution. Appl. Therm. Eng. 2013. Vol. 61. P. 577—582.

31. Martorano M.A., Capocchi J.D.T. Heat transfer coefficient at the metal-mould interface in the unidirectional solidification of Cu—8%Sn alloys. Int. J. Heat Mass Transfer. 2000. Vol. 43. P. 2541—2552.

32. Griffiths W.D. A model of the interfacial heat-transfer coefficient during unidirectional solidification of an aluminum alloy. Metall. Mater. Trans. B. 2000. Vol. 31B. No. 2. P. 285—295.

33. Zhmurikov E.I., Savchenko I.V., Stankus S.V., Tecchio L. Izmereniya teplofizicheskikh svoistv grafitovykh kompozitov dlya konvertora neitronnoi misheni [Measurements of thermal properties of graphite composites for neutron target converter]. Vestnik NGU. Seriya: Fizika. 2011. Vol. 6. No. 2. P. 77—84.

34. Powell R.W., Ho C.Y., Liley P.E. Thermal conductivity of selected materials NSRDS 8 (Report). Washington D.C.: US Government Printing Office, 1966.

35. Chirkin V.S. Teplofizicheskie svoistva materialov [Thermal properties of materials]. Moscow: Fizmatgiz, 1959.

36. Huggins R.A. Energy storage: fundamentals, materials and applications. Heidelberg: Springer, 2015.

37. Larikov L.N., Yurchenko Yu.F. Teplovye svoistva metallov i splavov [The thermal properties of metals and alloys]. Kiev: Naukova dumka, 1985.

38. Martienssen W., Warlimont H. Springer handbook of condensed matter and materials data. Heidelberg: Springer, 2006.

39. Taylor R.E., Groot H. Thermophysical properties of POCO graphite: AFOSR-TR-78-1375 (Report). Indiana: Purdue University Lafayette Properties Research Laboratory, 1978.


Review

For citations:


Bazhenov V.E., Koltygin A.V., Tselovalnik Yu.V., Sannikov A.V. DETERMINATION OF HEAT TRANSFER COEFFICIENT BETWEEN ALUMINUM CASTING AND GRAPHITE MOLD. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):40-52. (In Russ.) https://doi.org/10.17073/0021-3438-2017-1-40-52

Views: 1967


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)