Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

ANODE GAS DYNAMICS IN HIGH-TEMPERATURE CRYOLITE MELT-ALUMINA SLURRY

https://doi.org/10.17073/0021-3438-2017-1-13-18

Abstract

The paper shows the results of simulating physical behavior of bubbles formed by oxygen electrowinning on an inert anode during hightemperature alumina slurry electrolysis in a fluoride melt. As part of the study, similarity criteria were calculated with experiments conducted on a water-based model of a cell with vertical electrodes, and the data on bubble behavior in slurry was obtained by video recording. The 20 % aqueous sulfuric acid solution with 30 vol.% alumina content was used as electrolyte for the model. Experiments were conducted in the electric current density range from 0,05 to 0,25 A/cm2. The video was recorded using the Nikon D3100 camera with 30 frames per second rate. The motion pattern of bubbles was obtained along with the quantitative data describing coalescence and bubble rise velocity. 125 bubbles with a thickness of 0,8 to 2,3 mm were analyzed to determine the average bubble rise velocity. Bubbles rose in a slug regime at 1,0–2,3 cm/s. The thickness of a bubble layer was about 5 mm. Further studies will be conducted to obtain new data on the bubble behavior at different solid contents, current densities, electrodes inclination angles, and particle size distributions.

About the Authors

A. S. Yasinsky
Siberian Federal University
Russian Federation

postgraduate student at Department of non-ferrous metals, 

660025, Krasnoyarsk, Krasnoyarskii rabochii, 95



P. V. Polyakov
Siberian Federal University
Russian Federation

Dr. Sci. (Chem.), prof., professor-consultant at Department of non-ferrous metals,

660025, Krasnoyarsk, Krasnoyarskii rabochii, 95



A. B. Klyuchantsev
Siberian Federal University
Russian Federation

senior researcher at Department of non-ferrous metals

660025, Krasnoyarsk, Krasnoyarskii rabochii, 95



References

1. Kirpichev M.V. Teoriya podobiya [Theory of similarity]. Moscow: Izdatel’stvo akademii nauk SSSR, 1953.

2. Huntley H.E. Analiz razmernostei [Dimensional analysis]. Moscow: Mir, 1970.

3. Simakov D.A. Razrabotka osnov tekhnologii polucheniya alyuminiya elektrolizom suspenzii glinozema vo ftoridnykh rasplavakh s tsel’yu uluchsheniya tekhnicheskikh i ekologicheskikh pokazatelei protsessa Eru—Holla [Aluminum electrowinning from alumina slurry in fluoride melts fundamentals development to increase Hall—Heroult technical and ecological characteristics]: Dissertation of PhD. Krasnoyarsk: GUTSMiZ, 2006.

4. Polyakov P.V., Simakov D.A. Sposob polucheniya metallov elektrolizom rasplavlennykh solei [A method of aluminum production by molten salt electrolysis]: Pat. 2274680 (RF). 2006.

5. Polyakov P.V., Simakov D.A. Mnogopolyarnaya elektroliznaya vanna dlya polucheniya zhidkikh metallov elektrolizom rasplavov i sposob ustanovki elektroliznykh vann [Multipolar electrolysis cell for liquid metals production by melts electrolysis and a method of an electrolysis cells installation]: Pat. 2275443 (RF). 2006.

6. Helmut Vogt. Gas-evolving electrode. In: Comprehensive treatise of electrochemistry. N.-Y.; London: Plenum press, 1983. Vol. 6. P. 445—489.

7. Paul J. Sides. Phenomena and effects of electrolytic gas evolution. In: Modern aspects of electrochemistry. N.-Y.; London: Plenum press, 1986. No. 18. P. 303—355.

8. Ukshe E.A., Polyakova G.V., Medvetskaya G.A. Dinamika khlora i magniya pri elektrolize rasplavlennykh khloridov [Chlorine and magnesium dynamics at molten chloride electrolysis]. Zhurnal prikladnoi khimii. 1960. No. 10. P. 2279—2284.

9. Morshed Alam, Yos Morsi, William Yang, Krishna Mohanarangam, Geoff Brooks, John Chen. Investigation of electrolytic bubble behavior in aluminum smelting cell. Light Metals. 2013. P. 591—596.

10. Laurent Cassayare, Torstain A. Utigart, Sylvie Bouvet. Visualizing gas evolution on graphite and oxygen-evolving anodes. JOM. 2002. May. P. 41—45.

11. Subrat Das, Lanka Dinushke Weerasiri, Veeriah Jegatheesan. Bubble flow in static magnetic field. Light Metals. 2015. P. 789—793.

12. Are J. Simonsen, Kristian Etienne Einasrud, Ingo Eick. The impact of bubble-bubble interaction on anodic gas release: a water model analysis. Light Metals. 2015. P. 795—800.

13. Alexandre Perron, Lazlo I. Kiss, Sandor Poncsak. Regimes of the movement of bubbles under the anode in an aluminum electrolysis cell. Light Metals. 2005. P. 565—570.

14. Kutepov A.M., Polyanin A.D., Zapryanov Z.D., Vyaz’min A.V., Kazenin D.A. Khimicheskaya gidrodinamika [Chemical hydrodynamics]. Moscow: Kvantum, 1996.

15. Shestakov V.M., Polyakov P.V., Burnakin V.V. Skorost’ vsplyvaniya odinochnykh puzyrei v rasplavlennykh solyakh [Single bubbles vertical velocity in molten salts]. Teoreticheskie osnovy khimicheskoi tekhnologii. 1984. Vol. XVIII. No. 3. P. 118—126.


Review

For citations:


Yasinsky A.S., Polyakov P.V., Klyuchantsev A.B. ANODE GAS DYNAMICS IN HIGH-TEMPERATURE CRYOLITE MELT-ALUMINA SLURRY. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):13-18. (In Russ.) https://doi.org/10.17073/0021-3438-2017-1-13-18

Views: 685


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)