Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

ZETA POTENTIAL OF ULTRAFINE SULFIDE SURFACE AND FLOATABILITY OF MINERALS

https://doi.org/10.17073/0021-3438-2017-1-4-12

Abstract

The paper shows the results obtained in experimental studies of zeta potential of ultrafine sulfides (chalcopyrite, tennantite, galena, sphalerite, pyrite, pyrrhotite); floatability of mono-mineral flotation grade sulfide fractions (–0,1 + 0,05 mm) in the mechanical flotation cell; floatability of sludges (–0,041 + 0,010 mm) in the Hallimond tube with adsorption under foamless flotation conditions. The method for preparation of ultrafine powders and sulfhydryl collectors for zeta potential measurement is provided. The paper studies zeta potential of mineral particle surface and insoluble forms of sulfhydryl collectors in the pH range from 2,0 to 12,5 (acidic medium was prepared using H2SO4, alkali medium was prepared using NaOH or Ca(OH)2). The obtained zeta potentials of sulfides were different for sodium hydroxide and lime media. In NaOH medium at pH> 9,5 zeta potential values of all sulfides were negative; in Ca(OH)2 medium at pH > 11 they had positive zeta potential values (1–18 mV); chalcopyrite zeta potential values are positive in the studied range pHCa(OH)2 = 9,0÷12,5. Isoelectric points were identified for chalcopyrite (pH = 6,5 and 8,8), tennantite (pH = 3,0), sphalerite (pH = 5,1 and 6,4), pyrite (pH = 3,1 and 8,9) and pyrrhotite (pH = 7,0) in sulfuric acid and sodium hydroxide medium; for tennantite and sphalerite (pH = 12,0), galena (pH = 11,2), pyrite (pH = 9,5 and 11,2), pyrrhotite (pH = 9,5 and 12,1) in lime medium. Measurements of zeta potential values of ultrafine sulfide particles make it possible to define more exactly the mechanism of interaction between sulfhydryl collectors and sulfides, associate non-selective extraction of sulfide sludges in high-alkali lime medium with the electrostatic component contribution during adhesion of ultrafine sulfide particles on bubbles and their mechanical removal to the froth.

About the Authors

V. A. Ignatkina
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof., Department of enrichment and processing of minerals and technogenic raw materials (EPM&TRM), 

119049, Moscow, Leninskii pr., 4



V. A. Bocharov
National University of Science and Technology (NUST) «MISIS»
Russian Federation
Dr. Sci. (Tech.), prof., Department of EPM&TRM


D. D. Aksenova
National University of Science and Technology (NUST) «MISIS»
Russian Federation
engeneer of Centre «Resource-saving technology of processing of mineral raw materials»


A. A. Kayumov
National University of Science and Technology (NUST) «MISIS»
Russian Federation
postgraduate student, Department of EPM&TRM


References

1. Klassen V.I., Mokrousov V.A. Vvedenie v teoriyu flotatsii [Introduction in flotation science]. Moscow: Gosgortekhizdat, 1959. P. 232—238.

2. Sorokin M.M. Flotatsionnye metody obogashcheniya. Khimicheskie osnovy flotatsii [Chemical essentials of flotation]. Мoscow: MISIS, 2011. P. 95—99.

3. Mao L., Yoon R.-H. Predicting flotation rates using a rate equation derived from first principles. Int. J. Miner. Process. 1997. Vol. 51. P. 171—181.

4. Fuerstenau D.W., Pradip. Zeta potentials in the flotation of oxide and silicate minarals. Adv. Colloid Interface Sci. 2005. Vol. 114—115. P. 9—26. DOI: 10.1016/jcis200408.006.

5. Melik-Gaikazyan V.I., Emel’yanova N.P. Konkuriruyushchie predstavleniya v rabotakh po pennoi flotatsii i perspektivy ikh primeneniya dlya podbora reagentov [The competing representations in works on froth flotation and prospects of their application for selection of reagents]. Izv. vuzov. Tsvetnaya metallurgiya. 2007. No. 4. P. 4—20.

6. Chanturiya V.A., Vigdergauz V.E. Elektrokhimiya sul’fidov. Teoriya i praktika flotatsii [Electro-chemistry of sulfides. Theory and practice of flotation]. Moscow: Ruda i metally, 2008.

7. Abramov A.A. Flotatsionnye metody obogashcheniya [Flotation methods of ore-dressing]. Moscow: MGGU, 2008.

8. Rodriguez K., Araujo M. Temperature and pressure effects on zeta potential values of reservoir minerals. J. Colloid Interface Sci. 2006. Vol. 300. P. 788—799. DOI: 10.1016/j.jcis2006.04030.

9. Kaya A., Yukselen Y. Zeta potential of clay minerals and quartz contaminated by heavy metals. Can. Geotechnical J. 2005. Vol. 42. No. 5. P. 1280—1289. DOI: 10.1139/t05-048.

10. Samygin V.D., Filippov L.O., Shekhirev D.V. Osnovy obogashcheniya rud [Basics of ore-dressing]. Moscow: Alteks, 2003. P. 115—130.

11. Prestidge C.A. Rheological investigation of ultrafine galena particle slurries under flotation-related condition. Int. J. Miner. Process. 1997. Vol. 51. P. 241—254.

12. Fullston D., Fomasiero D., Ralston J. Zeta potential study of the oxidation of copper sulfide minerals. Colloids Surf. A: Physicochem. Eng. Aspects. 1999. Vol. 146 (1-3). P. 113—121. DOI: 101016/S0927-7757(98)00725-0.

13. Mermillod-Blondin R., Kongolo M., de Donato R., Benzaazoua M., Barres O., Bussiere B., Aubertin M. Pyrite flotation with xanthate under alkaline conditions — application to environmental desulfurization. In: Centenary of flotation symposium (Brisbane, QLD, 6—9 June 2005). P. 683—692.

14. Chandra A.P., Gerson A.R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite, pyrite. Adv. Colloid Interface Sci. 2009. Vol. 145. P. 97—100.

15. López Valdivieso A., Sánchez López A.A., Song S. On the cathodic reaction coupled with the oxidation of xanthates at the pyrite/aqueous solution interface. Int. J. Miner. Process. 2005. Vol. 77. No. 3. P. 154—164.

16. Elmahdy A.M., Mirnezami M., Finch J.A. Zeta potential of air bubbles in presence of froths. Int. J. Miner. Process. 2008. Vol. 89. Iss. 1—4. P. 40—43.

17. Oliveira C., Rubio J. Zeta potential of single and polymer-coated microbubbles using an adapted microelectrophoresis technique. Int. J. Miner. Process. 2011. Vol. 98. P. 118—123. DOI:10.1016/j.minpro.2010.10.006.

18. Tekhnicheskie zapiski po problemam vody [Technical notes on water problems]. Мoscow: Stroiizdat, 1983. Vol. 1. P. 61—69.

19. Ignatkina V.A., Bocharov V.A., D’yachkov F.G. Collecting properties of diisobutyl dithiophosphinate in sulfide mineral flotation from sulfide ore. J. Mining Sci. 2013. Vol. 49. No. 5. P. 795—802. DOI: 10.1134/S1062739149050146.

20. Yagudina Yu.R. Razrabotka i obosnovanie parametrov kombinirovannoi tekhnologii pererabotki tennantitsoderzhashchikh rud medno-kolchedannykh mestorozhdenii Urala [Development and justification of parameters of the combined technology of Ural fields’ tennantitecontaining and copper-pyrite ores processing]: Abstract of the dissertation of PhD. Magnitogorsk: MGTU, 2015. URL: http://www.magtu.ru/dokumenty/finish/549-yagudina-yuliya-radikovna/3803-avtoreferat-yagudinojyu-r.html (accessed: 01.04.2016).

21. Mikhailov V.A., Sorokina O.V., Savinkina E.V., Davydova M.N. Khimicheskoe ravnovesie [Chemical balance]. Moscow: Binom. Laboratoriya znanii, 2008.

22. Reutov O.A., Kurts A.L., Butin K.P. Organicheskaya khimiya. Chast' 1 [Organic chemistry. Part 1]. Moscow: Binom. Laboratoriya znanii, 2009. P. 208—211.

23. Ryaboi V.I., Shenderovich V.A., Krechetov V.P. Primenenie aeroflotov pri flotatsii rud [Using aeroflots for ore-dressing]. Obogashchenie rud. 2005. No. 6. P. 43—44.

24. Ignatkina V.A., Bocharov V.A. Osobennosti flotatsii raznovidnostei sul’fidov medi i sfalerita kolchedannykh rud [Features of flotation of various copper sulfides and sphalerite pyrite ores]. Gornyi zhurnal. 2014. No. 12. P. 75—79.


Review

For citations:


Ignatkina V.A., Bocharov V.A., Aksenova D.D., Kayumov A.A. ZETA POTENTIAL OF ULTRAFINE SULFIDE SURFACE AND FLOATABILITY OF MINERALS. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):4-12. (In Russ.) https://doi.org/10.17073/0021-3438-2017-1-4-12

Views: 1037


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)