Growth of (αTi) grain boundary layers in Ti–Co alloys
https://doi.org/10.17073/0021-3438-2016-5-69-77
Abstract
About the Authors
A. S. GornakovaRussian Federation
Cand. Sci. (Phys.-Math.), senior research associate, Laboratory of interfaces in metals, ISSP RAS
S. I. Prokofjev
Russian Federation
Cand. Sci. (Phys.-Math.), senior research associate, ISSP RAS
B. B. Straumal
Russian Federation
Dr. Sci. (Phys.-Math.), prof. of the Department of physical chemistry, leading researcher of the Laboratory of hybrid nanomaterials of National University of Science and Technology (NUST) «MISIS», head of the Laboratory of interfaces in metals of the ISSP RAS.
K. I. Kolesnikova
Russian Federation
postgraduate student, Department of physical chemistry of NUST «MISIS».
References
1. Il’in A.A., Kolachev B.A., Pol’kin I.S. Titanovye splavy. Sostav, struktura, svoistva [Titanium alloys. The composition, structure and properties]. Moscow: VILS-MATI, 2009.
2. Kolachev B.A. Fizicheskoe metallovedenie titana [Physical metallurgy of titanium]. Moscow: Metallurgiya, 1976.
3. Kolachev B.A., Eliseev Yu.S., Bratukhin A.G., Talalaev V.D. Titanovye splavy v konstruktsiyakh i proizvodstve aviadvigatelei i aviatsionno-kosmicheskoi tekhniki [Titanium alloys in the design and production of aircraft engines and aerospace equipment]. Moscow: MAI, 2001.
4. Kolachev B.A., Betsofen S.Ya., Bunin L.A., Volodin V.A. Fiziko-mekhanicheskiye svoistva legkikh konstruktsionnykh splavov [Physical and mechanical properties of light structural alloys]. Moscow: Metallurgiya, 1995.
5. Kolachev B.A., Lyasotskaya V.S. Correlation between diagrams of isothermal and anisothermal transformations and phase composition diagram of hardened titanium alloys. Metal Sci. Heat Treat. 2003. Vol. 45. P. 119—126.
6. Egorova Yu.B., Il’in A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Effect of the structure on the cutability of titanium alloys. Metal Sci. Heat Treat. 2003. Vol. 45. P. 134—139.
7. Kolachev B.A., Veitsman M.G., Gus’kova L.N. Structure and mechanical properties of annealed α+β titanium alloys. Metal Sci. Heat Treat. 1983. Vol. 25. P. 626—631.
8. Fishgoit A.V., Maistrov V.M., Il’in A.A., Rozanov M.A. Interaction of short cracks with the structure of metals. Sov. Mater. Sci. 1988. Vol. 24. P. 247—251.
9. Bobovnikov V.N., Luk’yanenko V.V., Fishgoit A.V. Effect of particles of the insoluble phase Al9FeNi on the kinetics of fatigue crack propagation in alloy AK4-1. Metal Sci. Heat Treat. 1982. Vol. 24. P. 191—194.
10. Straumal B.B., Baretzky B., Kogtenkova O.A., Straumal A.B., Sidorenko A.S. Wetting of grain boundaries in Al by the solid Al3Mg2 phase. J. Mater. Sci. 2010. Vol. 45. P. 2057—2061.
11. Straumal B.B., Gust W., Watanabe T. Tie lines of the grain boundary wetting phase transition in the Zn-rich part of the Zn—Sn phase diagram. Mater. Sci. Forum. 1999. Vol. 294. P. 411—414.
12. Straumal B.B., Gornakova A.S., Kucheev Y.O., Baretzky B., Nekrasov A.N. Grain boundary wetting by a second solid phase in the Zr—Nb alloys. J. Mater. Eng. Perform. 2012. Vol. 21. P. 721—724.
13. Straumal B.B., Gornakova A.S., Kogtenkova O.A., Protasova S.G., Sursaeva V.G., Baretzky B. Continuous and discontinuous grain boundary wetting in the Zn—Al system. Phys. Rev. B. 2008. Vol. 78. P. 054202.
14. Murray J.L. Diagrams of binary titanium alloys. Bull. Alloy Phase Diagr. 1982. Vol. 3(1). P. 74—85.
15. Gurov K.P., Kartashkin B.A., Ugaste Yu.E. Vzaimnaya diffuziya v mnogofaznykh metallicheskikh sistemakh [Interdiffusion in multiphase metallic systems]. Moscow: Nauka, 1981.
16. Sharma G., Ramanujan R.V., Tiwari G.P. Instability mechanisms in lamellar microstructures. Acta Mater. 2000. Vol. 48. P. 875—889.
17. Graham L.D., Kraft R.W. Coarsening of eutectic microstructures at elevated temperatures. Trans. Met. Soc. AIME. 1966. Vol. 236. P. 94—96.
18. Tian Y.L., Kraft R.W. Mechanisms of perlite spherodization. Metall. Trans. A. 1987. Vol. 18A. P. 1403—1414.
19. Wey M.Y., Choi J.H. Coarsening of lamellar microstructures. J. Korean Inst. Met. Mater. 1994. Vol. 32. P. 1269—1273.
20. Park D.-Y., Yang J.-M. Coarsening of lamellar microstructures in directionally solidified yttrium aluminate/ alumina eutectic fiber. J. Am. Ceram. Soc. 2001. Vol. 84. P. 2991—2996.
21. Lifshitz I.M., Slyozov V.V. O kinetike diffuzionnogo raspada peresyshchennykh tverdykh rastvorov [On the kinetics of diffusion decomposition of supersaturated solid solutions]. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 1958. Vol. 35. P. 479—492.
22. Wagner C. Theorie der Älterung von Niederlschlägen durch Umlösen (Ostwald-Reifung). Z. Electrochem. 1961. Bd. 65. S. 581—591.
23. Ardell A.J. Effect of volume fraction on particle coarsening — theoretical considerations. Acta Metall. 1972. Vol. 20. P. 61—68.
24. Speich G.R., Oriani R.A. Rate of coarsening of copper precipitate in an alpha-iron matrix. Trans. Metall. Soc. AIME. 1965. Vol. 233. P. 623—631.
25. Ardell A.J. The growth of gamma prime precipitates in aged Ni—Ti alloys. Metall. Mater. Trans. B. 1970. Vol. 1. P. 525—534.
26. Mullins W.W. The statistical self-similarity hypothesis in grain-growth and particle coarsening. J. Appl. Phys. 1986. Vol. 59. P. 1341—1349.
27. Mullins W.W., Viňals J. Self-similarity anf growth-kinetics driven by surface free-energy reduction. Acta Mater. 1989. Vol. 37. P. 991—997.
Review
For citations:
Gornakova A.S., Prokofjev S.I., Straumal B.B., Kolesnikova K.I. Growth of (αTi) grain boundary layers in Ti–Co alloys. Izvestiya. Non-Ferrous Metallurgy. 2016;(5):69-77. (In Russ.) https://doi.org/10.17073/0021-3438-2016-5-69-77