Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Finite element simulation of flange rolling on the L63 brass workpiece

https://doi.org/10.17073/0021-3438-2016-5-52-60

Abstract

The paper develops a mathematical model of the flange cold rolling process on the cylindrical workpiece made of L63 alloy. It analyzes stressed and strained states of the workpiece during three stages of a flanged piece forming. It is found that at the first stage the base area of the formed cone is most problematic in terms of possible workpiece destruction. Risks at the second and the final stage of flange forming are in the flange end surface and cylindrical hub surface of the rolling component.

About the Authors

V. N. Vostrov
Peter the Great Saint-Petersburg Polytechnic University (195251, Russia, St. Petersburg, Politekhnicheskaya str., 29).
Russian Federation
Dr. Sci. (Tech.), prof., Department of technology constructional materials and material science, Peter the Great Saint-Petersburg Polytechnic University.


P. V. Kononov
Peter the Great Saint-Petersburg Polytechnic University (195251, Russia, St. Petersburg, Politekhnicheskaya str., 29).
Russian Federation
engineer of Department of technology constructional materials and material science, Peter the Great Saint-Petersburg Polytechnic University.


V. S. Modestov
Peter the Great Saint-Petersburg Polytechnic University (195251, Russia, St. Petersburg, Politekhnicheskaya str., 29).
Russian Federation
lead engineer of Department of mechanics and control processes, Peter the Great Saint-Petersburg Polytechnic University.


I. N. Loginov
lead engineer of Department of mechanics and control processes, Peter the Great Saint-Petersburg Polytechnic University.
Russian Federation
lead engineer of Department of mechanics and control processes, Peter the Great Saint-Petersburg Polytechnic University.


References

1. Withers P.J., Bhadeshia H.K.D.H. Residual stress. Part 1. Measurement techniques. Mater. Sci. Technol. 2001. Vol. 17. No. 4. P. 355—365.

2. Vasil’kov S.D., Aleksandrov A.S., Afanas’ev I.V. Opredelenie ostatochnykh napryazhenii v poverkhnostnom sloe detalei iz alyuminievogo splava posle mekhanicheskoi obrabotki [Determination of residual stresses in the surface layer of the aluminum alloy part after machining]. Instrument i tekhnologii. 2010. No. 27. P. 26—29.

3. Pesin A., Salganik V., Trahtengertz E., Cherniahovsky M., Rudakov V. Mathematical modelling of the stress—strain state in asymmetric flattening of metal band. J. Mater. Process. Technol. 2002. Vol. 125—126. P. 689—694.

4. Han X., Hua L. 3D FE modelling of contact pressure response in cold rotary forging. Tribol. Int. 2013. Vol. 57. P. 115—123.

5. Siddique M., Abid Muhammad, Junejo H.F., Mufti R.A. 3-D finite element simulation of welding residual stresses in pipe-flange joints: effect of welding parameters. Mater. Sci. Forum. 2005. Vol. 490—491. P. 79—84.

6. Govik A., Nilsson L., Moshfegh R. Finite element simulation of the manufacturing process chain of a sheet metal assembly. J. Mater. Process. Technol. 2012. Vol. 212. No. 7. P. 1453—1462.

7. Gao M., Krishnamurthy R., Tandon S., Arumugam U. Critical strain based ductile damage criterion and its application to mechanical damage in pipelines. In: 13-th Intern. conf. on fracture. Beijing, China. 2013. Vol. 5. P. 3723.

8. Shaban Ghazani M., Vajd A., Mosadeg B. 3D finite element study of temperature variations during equal channel angular pressing. J. Adv. Mater. Process. 2014. Vol. 2. No. 1. P. 47—54.

9. Gorbunov I.V., Efremenkov I.V., Leont’ev V.L., Gismetulin A.R. Osobennosti modelirovaniya protsessov mekhanicheskoi obrabotki v SAE-sistemakh [Features simulation of machining processes in the CAE-systems]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2013. Vol. 15. No. 4(4). P. 846—853.

10. Petrov P.A. Izotermicheskaya shtampovka alyuminievykh i magnievykh splavov: modelirovanie tekhnologicheskikh protsessov [Isothermal forging aluminum and magnesium alloys: modeling of technological processes]. In: Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Avtomobile- i traktorostroenie v Rossii», posvyashchennoi 145-letiyu MGTU «MAMI» [Materials of the international scientific and technical conferences «The car- and tractor construction in Russia», devoted to the 145 anniversary of MGTU «MAMI»]. Moscow: MAMI, 2010. P. 107—113.

11. ANSYS Theory Reference. 11-th ed. ANSYS Release 10.0. Canonsburg, PA. USA, ANSYS inc., 2005.

12. Nowak J., Madej L., Ziolkiewicz S., Plewinski A., Grosman F., Pietrzyk M. Recent development in orbital forging technology. Int. J. Mater. Forming. 2008. Vol. 1. Suppl. 1. P. 387—390.

13. Bartnicki Ja. The theoretical and experimental research of rolling-extrusion process. Lublin: Lublin University of Technology, 2009.

14. Kunkin S.N., Aksenov L.B. Tortsevaya raskatka s vydavlivaniem utolshchennykh polykh flantsev [Face rolling with thickened hollow extruded flange]. In: Al’manakh sovremennoi nauki i obrazovaniya [Almanac of modern science and edication]. No. 7 (97). Tambov: Gramota, 2015. P. 84—87.

15. Basalaev D.E., Basalaev E.P., Nguen K.H. Teoreticheskoe issledovanie protsessov formirovaniya flantsev na tortse i stenke vnutrennikh polykh tsilindricheskikh zagotovok [Theoretical study of the formation of the flange on the end wall and the inner hollow cylindrical workpieces]. Izvestiya TulGU. Tekhnicheskie nauki. 2013. No. 1. P. 109—115.

16. Kononov P.V., Kononova I.E., Vostrov V.N. Primenenie atomno-silovoi mikroskopii dlya analiza napryazhennogo i deformirovannogo sostoyaniya detali s flantsem iz latuni [Application of atomic force microscopy for analysis of stress and strain state with the flange parts of brass]. Izvestiya SPbGTU «LETI». 2014. No. 6. P. 7—11.

17. Kononov P.V., Vostrov V.N. Konechno-elementnoe modelirovanie protsessa raskatki flantsa na trubchatoi zagotovke [Finite element modeling of the rolling flange on tubular billet]. Molodoi uchenyi. 2013. No. 9. P. 46—49.

18. Vostrov V.N., Kononov P.V. Sposob raskatki flantsev trubchatykh zagotovok [Method of rolling tube blanks flanges]: Pat. 2499648 C1 (RF). 2013.

19. Ribin Yu.I., Rudskoi A.I., Zolotov A.M. Matematicheskoe modelirovanie i proektirovanie tekhnologicheskikh protsessov obrabotki metallov davleniem [Mathematical modeling and design process of metal forming processes]. Saint-Petersburg: Nauka, 2004. 20. Hallquist J.O. LS—DYNA. Theoretical manual. Livermore: Livermore Software Technology Corp., 1998.

20. Borovkov A.I. Vozmozhnosti sistemy konechno-elementnogo modelirovaniya ANSYS/LS-DYNA [Features of the finite element simulation ANSYS / LS-DYNA]. In: I mezhdunarodnaya konferentsiya polzovatelei programmnogo obespecheniya ANSYS [First Int. Conf. of users of the software ANSYS] (Moscow, 22—23 Oct., 2003). Moscow: EMT—ANSYS-Centre, 2003. P. 128—136.

21. Golenkov V.A., Zykova Z.P., Kondrashov V.I. Matematicheskoe modelirovanie protsessov obrabotki metallov davleniem na personal’nom komp’yutere [Mathematical modeling of metal forming processes on a PC]. Moscow: Mashinostroenie, 1994.

22. Kolmogorov V.L. Mekhanika obrabotki metallov davleniem [Mechanic treatment of metals by pressure]. Ekaterinburg: UGTU—UPI, 2001.

23. Bernshtein M.L. Mekhanicheskie svoistva metallov [Mechanical properties of metals]. Moscow: Metallurgiya, 1979.


Review

For citations:


Vostrov V.N., Kononov P.V., Modestov V.S., Loginov I.N. Finite element simulation of flange rolling on the L63 brass workpiece. Izvestiya. Non-Ferrous Metallurgy. 2016;(5):52-60. (In Russ.) https://doi.org/10.17073/0021-3438-2016-5-52-60

Views: 654


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)