Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Determination of heat transfer coefficient between AK7ch (A356) aluminum alloy casting and no-bake mold

https://doi.org/10.17073/0021-3438-2016-5-42-51

Abstract

Determined the iHTC (interface Heat Transfer Coefficient) between AK7ch (A356) aluminum alloy casting and no-bake mold. The heat transfer coefficient is determined by minimizing the error function values, representing the difference between the experimental and calculated temperature in the mold values during pouring, solidification and cooling. Determined the values of the heat transfer coefficient above the liquidus temperature of the alloy hL = 900 W/(m2·K) and below the solidus temperature hS = 600 W/(m2·K).
Changing of the heat transfer coefficient within hL = 900÷1200 W/(m2·K) and hS = 500÷900 W/(m2·K) has no sufficient effect on the error value, and it remains within ~22 °C. It was shown the usability of the simplified approach using constant heat transfer coefficient h = 500 W/(m2·K), whereas error value is 23,8 °C. Changing of iHTC as function of height of the cylindrical ingot was experimentally confirmed. This owes to the different values of metallostatic pressure applied to the solid skin of the solidifying casting, leads to closer contact of the metal and mold in the bottom of the casting.

About the Authors

V. E. Bazhenov
National University of Science and Technology (NUST) «MISIS» (119049, Russia, Moscow, Leninskii pr., 4).
Russian Federation
Cand. Sci. (Eng.), senior lecturer, Foundry Department, NUST «MISIS»


A. V. Koltygin
National University of Science and Technology (NUST) «MISIS» (119049, Russia, Moscow, Leninskii pr., 4).
Russian Federation
Cand. Sci. (Eng.), assistant prof., Foundry Department, NUST «MISIS»


Yu. V. Tselovalnik
National University of Science and Technology (NUST) «MISIS» (119049, Russia, Moscow, Leninskii pr., 4).
Russian Federation
student, Foundry Department, NUST «MISIS».


References

1. Tikhomirov M.D. Sravnenie teplovykh zadach v sistemakh modelirovaniya liteinykh protsessov «Poligon» i ProCast [Comparsion of thermal problems in «Poligon» and «ProCast» simulation software]. In: Komp'yuternoe modelirovanie liteinykh protsessov [Computer simulation of casting processes]: Collection of materials. Vol. 2. St. Petersburg: TsNIIM, 1996. P. 22.

2. Tikhomirov M.D. Modelirovanie teplovykh i usadochnykh protsessov pri zatverdevanii otlivok iz vysokoprochnykh alyuminievykh splavov i razrabotka sistemy komp’yuternogo analiza liteinoi tekhnologii [Simulation of thermal and shrinkage processes during solidification and developing of computer analysis model of cast technology]: Abstract of the dissertation of the PhD. St. Petersburg: SPbSPU, 2004.

3. Borovkov A.I., Burdakov S.F., Klyavin O.I., Mel’nikova M.P., Mikhailov A.A., Nemov A.S., Pal’mov V.A., Silina E.N. Komp’yuternyi inzhiniring [Computer engineering]. St. Petersburg: Izd-vo Politekhn. un-ta, 2012.

4. Wang D., Zhou C., Xu G., Huaiyuan A. Heat transfer behavior of top side-pouring twin-roll casting. J. Mater. Process. Technol. 2014. Vol. 214. P. 1275—1284.

5. Griffiths W.D., Kawai K. The effect of increased pressure on interfacial heat transfer in the aluminium gravity die casting process. J. Mater. Sci. 2010. Vol. 45. Iss. 9. P. 2330—2339.

6. Sun Z., Hu H., Niu X. Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60. J. Mater. Process. Technol. 2011. Vol. 211. P. 1432—1440.

7. Nishida Y., Droste W., Engler S. The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap. Metall. Mater. Trans. B. 1986. Vol. 17B. P. 833—844.

8. Bouchard D., Leboeuf S., Nadeau J.P., Guthrie R.I.L., Isac M. Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates. J. Mater. Sci. 2009. Vol. 44. Iss. 8. P. 1923—1933.

9. Lu S.-L., Xiao F.-R., Zhang S.-J., Mao Y.-W., Liao B. Simulation study on the centrifugal casting wet-type cylinder liner based on ProCAST. Appl. Therm. Eng. 2014. Vol. 73. P. 512—521.

10. Chen L., Wang Y., Peng L., Fu P., Jiang H. Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand. Exp. Therm. Fluid Sci. 2014. Vol. 54. P. 196—203.

11. Palumbo G., Piglionico V., Piccininni A., Guglielmi P., Sorgente D., Tricarico L. Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis. Appl. Therm. Eng. 2015. Vol. 78. P. 682—694.

12. Zhang L., Li L., Ju H., Zhu B. Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network. Energy Conv. Manag. 2010. Vol. 51. P. 1898—1904.

13. Sutaria M., Gada V.H., Sharma A., Ravi B. Computation of feed-paths for casting solidification using level-set-method. J. Mater. Process. Technol. 2012. Vol. 212. P. 1236—1249.

14. Baghani A., Davami P., Varahram N., Shabani M.O. Investigation on the effect of mold constraints and cooling rate on residual stress during the sand-casting process of 1086 steel by employing a thermomechanical model. Metall. Mater. Trans. B. 2014. Vol. 45. P. 1157—1169.

15. Bertelli F., Cheung N., Garcia A. Inward solidification of cylinders: Reversal in the growth rate and microstructure evolution. Appl. Therm. Eng. 2013. Vol. 61. P. 577—582.

16. Martorano M.A., Capocchi J.D.T. Heat transfer coefficient at the metal-mould interface in the unidirectional solidification of Cu—8%Sn alloys. Int. J. Heat Mass Transfer. 2000. Vol. 43. P. 2541—2552.

17. Griffiths W.D. A model of the interfacial heat-transfer coefficient during unidirectional solidification of an aluminum alloy. Metall. Mater. Trans. B. 2000. Vol. 31B. Iss. 2. P. 285—295.

18. Midea T., Shah, J.V. Mold material thermophysical data. AFS Trans. 2002. Vol. 110. P. 121—136.

19. Yu K.-O. Modeling for casting and solidification processing. N.Y.: CRC Press, 2001.

20. Bakhtiyarov S.I., Overfelt R.A., Teodorescu S.G. Electrical and thermal conductivity of A319 and A356 aluminum alloys. J. Mater. Sci. 2001. Vol. 36. P. 4643—4648.

21. Bencomo A.I., Bisbal R.I., Morales R. Simulation of the aluminum alloy A356 solidification cast in cylindrical permanent molds. Revista Matéria. 2008. Vol. 13. No. 2. P. 294—303.

22. El-Mahallawy N.A., Assar A.M. Metal-mould heat transfer coefficient using end-chill experiments. J. Mater. Sci. Lett. 1988. Vol. 7. P. 205—208.


Review

For citations:


Bazhenov V.E., Koltygin A.V., Tselovalnik Yu.V. Determination of heat transfer coefficient between AK7ch (A356) aluminum alloy casting and no-bake mold. Izvestiya. Non-Ferrous Metallurgy. 2016;(5):42-51. (In Russ.) https://doi.org/10.17073/0021-3438-2016-5-42-51

Views: 721


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)