Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Electrical conductivity, density and liquidus temperature of KCl–PbCl2 equimolar melt with addition of lead oxide

https://doi.org/10.17073/0021-3438-2016-5-10-16

Abstract

The paper studies the effect of an additive component PbO (up to 8,1 mol.%) on physical and chemical properties of the KCl–PbCl2 molten system. The study experimentally measures temperature of primary crystallization of selected electrolyte compositions. It uses the method of impedance measuring in cells with parallel electrodes and finds dependencies of electrolyte conductivity on the temperature and PbO content.
It uses Archimedean method to measure temperature dependence of the KCl–PbCl2 equimolar melt density containing up to 8,1 mol.% of lead oxide, and calculates values of molar volumes. The paper demonstrates that concentration dependence of the molar volume is of an extreme nature.

About the Authors

A. N. Efremov
Institute of High Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences (IHTE UB RAS) (620990, Russia, Yekaterinburg, Akademicheskaya str., 20)
Russian Federation
junior researcher of IHTE UB RAS.


N. P. Kulik
Institute of High Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences (IHTE UB RAS) (620990, Russia, Yekaterinburg, Akademicheskaya str., 20)
Russian Federation
Cand. Sci. (Chem.), senior researcher of IHTE UB RAS.


A. A. Kataev
Institute of High Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences (IHTE UB RAS) (620990, Russia, Yekaterinburg, Akademicheskaya str., 20)
Russian Federation
junior researcher of IHTE UB RAS.


A. P. Apisarov
Institute of High Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences (IHTE UB RAS) (620990, Russia, Yekaterinburg, Akademicheskaya str., 20)
Russian Federation
Cand. Sci. (Chem.), senior researcher of IHTE UB RAS.


A. A. Redkin
Institute of High Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences (IHTE UB RAS) (620990, Russia, Yekaterinburg, Akademicheskaya str., 20)
Russian Federation
Cand. Sci. (Chem.), senior researcher of IHTE UB RAS.


A. Yu. Chuikin
Institute of High Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences (IHTE UB RAS) (620990, Russia, Yekaterinburg, Akademicheskaya str., 20)
Russian Federation
Cand. Sci. (Chem.), senior researcher of IHTE UB RAS.


P. A. Arkhipov
Institute of High Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences (IHTE UB RAS) (620990, Russia, Yekaterinburg, Akademicheskaya str., 20)
Russian Federation
Cand. Sci. (Chem.), senior researcher of IHTE UB RAS.


Yu. P. Zaikov
Ural Federal University n.a. the first President of Russia B.N. Yeltsin (620002, Russia, Yekaterinburg, Mira str., 19).
Russian Federation
Dr. Sci. (Eng.), prof., head of Department «Technology of electrochemical productions»


References

1. Arkhipov P.A., Zaikov Yu.P., Ashikhin V.V., Khalimullina Yu.R., Tropnikov D.L. Sposob electroliticheskogo polucheniya svintsa [A method of electrolytic production of lead]: Pat. 2487199 (RF). 2013.

2. Arkhipov P.A., Zaikov Yu.P., Ashikhin V.V., Khalimullina Yu.R., Tropnikov D.L., Zaikova G.G. Bipolyarnyi electrolizer dlya rafinirovaniya chernovogo svintsa [A bipolar electrolyzer for black lead refining]: Pat. 2415202 (RF). 011.

3. Ashikhin V.V. Anodnoe rafinirovanie chernovogo svintsa v khloridnykh rasplavakh [Anode refining of black lead in chloride melts]: Abstract of the dissertation of PhD. Yekaterinburg: UGTU—UPI, 2009.

4. Zaikov Yu.P., Arkhipov P.A., Plekhanov K.A., Ashikhin V.V., Khalimullina Yu.R., Molchanova N.G. Anodnaya polyarizatsiya i vykhod po toku splavov Pb—Sb v rasplave KCl—PbCl2. Rasplavy. 2007. No. 6. P. 60—65.

5. Zarubitskii O.G., Opanasyuk V.P., Omel’chuk A.A., Zakharchenko N.F. Electrochemical separation of multicomponent tin-based alloys in salt melts. Russ. J. Appl. Chem. 2001. Vol. 74. No. 2. P. 209—213.

6. Omel’chuk A.A. Electrorefining of heavy nonferrous metals in molten electrolytes. Russ. J. Electrochem. 2010. Vol. 46. No. 6. P. 680—690.

7. Kryukovsky V.A., Frolov A.V., Tkacheva O.Yu., Redkin A.A., Zaikov Yu.P., Khokhlov V.A., Apisarov A.P. Electrical conductivity of low melting cryolite melts. Light Metals. 2006. No. 2. P. 409—413.

8. Lantratov M.F., Moiseeva O.F. Electroprovodnost’ rasplavlennykh solei. II. Sistema PbCl2—KCl [Electrical conductivity of molten salts. II. PbCl2—KCl system]. Zhurnal fizicheskoi khimii. 1960. Vol. 34. No. 2. P. 367—373.

9. Janz J. Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. J. Phys. Chem. Ref. Data. 1988. Vol. 17. No. 2. P. 206—208.

10. Belyaev A.I., Zhemchuzhina E.A., Firsanova L.A. Fizicheskaya khimiya rasplavlennykh solei [Physical chemistry of molten salts]. Moscow: Metallurgizdat, 1957.

11. Rabinovich V.A., Khavin Z.Ya. Kratkii khimicheskii spravochnik [Brief chemical handbook]. Leningrad: Khimiya, 1991.

12. Easteal A.J., Hodge I.M. Electrical conductance of molten lead chloride and its mixtures with potassium chloride. J. Phys. Chem. 1970. Vol. 74. No. 4. P. 730—735.

13. Boardman N.K., Dorman F., Heymann H.E. Densities and molar volumes of molten salt mixtures. J. Phys. Colloid. Chem. 1949. Vol. 53. No. 3. P. 375—382.

14. Dracopoulos V., Kastrissios D.Th., Papatheodorou G.N. Raman spectra and structure of PbCl2—ACl (A = K, Cs) melts. Polyhedron. 2005. Vol. 24. P. 619—625.


Review

For citations:


Efremov A.N., Kulik N.P., Kataev A.A., Apisarov A.P., Redkin A.A., Chuikin A.Yu., Arkhipov P.A., Zaikov Yu.P. Electrical conductivity, density and liquidus temperature of KCl–PbCl2 equimolar melt with addition of lead oxide. Izvestiya. Non-Ferrous Metallurgy. 2016;(5):10-16. (In Russ.) https://doi.org/10.17073/0021-3438-2016-5-10-16

Views: 831


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)