Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

On production of Cu–Pb alloys by liquid metal homogenization

https://doi.org/10.17073/0021-3438-2016-4-76-82

Abstract

The study covers the microstructure of Cu–Pb alloys containing 7, 32, 50, 55 and 73 at.% Pb preliminary superheated in their liquid state to 1300 °C and crystallized at a cooling rate of 10 °C/sec. It was demonstrated that melt overheating resulted in complete or partial suppression of metal separation and formation of its more uniform structure that serve as an indirect evidence of changes in the structural state of metallic liquid. The application of homogenizing heat treatment of Cu–Pb melts by superheating to a temperature specific for each compound as a method to obtain massive ingots with a homogeneous structure was justified. It was demonstrated that Cu–50 at.% Pb alloy characterized by the highest value of mixing entropy is the most promising composition for massive ingot production by homogenizing heat treatment of a melt. The minimum micro-hardness difference of phases based on copper and lead for Cu–50 at.% Pb alloy determined material ability to withstand mechanical loads without residual deformation and failure, as well as its resistance to various types of wear.

About the Authors

O. A. Chikova
Ural Federal University named after the first Russian President Boris Yeltsin (UrFU)
Russian Federation

 Dr. Sci. (Phys.-Math.), Prof., Department of physics,

620002, Ekaterinburg, Mira str., 19



G. V. Sakun
Ural Federal University named after the first Russian President Boris Yeltsin (UrFU)
Russian Federation
Cand. Sci. (Phys.-Math.), Associate Professor, Department of physics


V. S. Tsepelev
Ural Federal University named after the first Russian President Boris Yeltsin (UrFU)
Russian Federation
Dr. Sci. (Tech.),, Director of Research center of the Institute of physics of metal liquids


References

1. Avraamov Yu.S., Shlyapin A.D. Novie kompozitsionnie materialy na osnove nesmeshivayuschihsya komponentov: Poluchenie, struktura, svoistva [New composite materials based on immiscible components: Аcquisition, structure, properties]. Moscow: MGIU, 1999.

2. Avraamov Yu.S., Shlyapin A.D. Splavy na osnove system s ogranichennoy rastvorimostiyu v zidkom sostoyani [Alloys based systems with unlimited solubility in the liquid state]. Moscow: Interkontaktnauka, 2002.

3. Troitskiy O.A., Baranov Yu.V., Avraamov Yu.S., Shlyapin A.D. Physicheskiye svoystva i tekhnologyy obrabotky sovremennykh materialov (teoriya, tekhnologiya, struktura i svoystva) [Physical properties and processing technology of advanced materials (theory, technology, structure and properties)]. Vol. 2. Moscow—Izhevsk: Instytut kompyuternykh issledovanii, 2004.

4. Lyakishev N.P. (Ed.) Dyagrammy sostoyaniya dvoynyh metallicheskih sistem [The diagrams of binary metallic systems]. Vol. 2. Moscow: Mashinostroenie, 1996.

5. Ivanov I.I., Zemskov V.S., Kubasov V.K., Pimenov V.I., Belokurova I.N., Gurov K.P., Demina E.V., Titkov A.N., Shulpina I.L. Plavleniye, kristallizatsiya i formoobrazovaniye v nevesomosty [Melting, crystallization and morphogenesis in weightlessness]. Moscow: Nauka, 1979.

6. Dobatkin V.I., Elagin V.I. Struktura splavov monotekticheskikh system pry bystrom ohlazdeniyi [The structure of alloys monotectic systems for rapid cooling]. Metally. No. 1. P.105—111.

7. Popel P.S., Chikova O.A., Brodova I.G., Polents I.V. Osobennosty strukturoobrazovaniya pri kristallyzatsiyi splavov Al—In [Features of structure formation in the crystallization of alloys Al—In]. Phyzika metallov i metallovedenie. 1992. No. 9. P. 111—115.

8. Suhanova T.D., Chikova O.A., Popel P.S., Brodova I.G. Vzaimosvyaz strukturnogo sostoyaniya zydkih i tyordyh splavov Аl—Рb [Correlation of the structural state of liquid and solid alloys Al—Pb]. Rasplavy. 2000. No. 6. P. 11—15.

9. Brodova I.G., Popel P.S., Eskin G.I. Liquid metal processing: Application to aluminium alloy production. L.—N.Y.: Taylor & Francis, 2002.

10. Vyuhin V.V., Sokolov A.M., Tsepelev V.S., Chikova O.A. Vyazkost i rassloenie rasplavov Cu—Pb [ The viscosity and the stratification of the melts of Cu—Pb]. Metallyi. 2015. No. 4. C. 19—22.

11. Firstov S.A., Gorban V.F., Krapivka N.A., Pechkovskyi E.P. Uprochneniye i mehanicheskiye svoystva lityh vysokoentropiynyh splavov [Hardening and mechanical properties of cast high-entropy alloys]. Kompozity i nanostruktury. 2011. No. 2. P. 5—20.

12. Chung-Chin Tung, Jien-Wei Yeh, Tao-Tsung Shun, Swe-Kai Chen, Yuan-Sheng Huang, Hung-Cheng Chen. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 2007. Vol. 61. P. 1—5.

13. Fichter R.E. High-entropy multielement alloys: Pat. 0159914 A1 (USA). 2002.


Review

For citations:


Chikova O.A., Sakun G.V., Tsepelev V.S. On production of Cu–Pb alloys by liquid metal homogenization. Izvestiya. Non-Ferrous Metallurgy. 2016;(4):76-82. (In Russ.) https://doi.org/10.17073/0021-3438-2016-4-76-82

Views: 972


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)