Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Hardness, adhesion strength and tribological properties of adaptive nanostructured plasma-ion vacuum-arc coatings (Ti, Al)N–Mo2N

https://doi.org/10.17073/0021-3438-2016-4-67-75

Abstract

The article reviews the properties of nanostructured multilayer coatings (Ti, Al)N–Mo2N obtained by plasma-ion vacuum arc deposition method (arc-PVD). The thickness of coating layers was comparable to the size of a grain, which was about 30–50 nm. Coating hardness reached 40 GPa with relative plastic work of deformation of about 60 %. It was found by the measuring scratching method that cohesive nature of coating destruction takes place entirely by a plastic strain mechanism, which was the evidence of its high viscosity. Local coating abrasion to a substrate level occurred at a load in the order of 75 N. Under test conditions as per «pin-on-disk» scheme using the opposing Al2O3 element at a load of 5 N, coating friction factor was equal to 0,35 and 0,50 at 20 °C and 500 °C respectively. Besides, it was practically not worn due to formation of MoO3 oxide in the friction zone (Magneli phase) which served as a solid lubricant. The increase in friction factor and appearance of significant wear were observed with further rising of test temperature. Such effect was due to intensified sublimation of MoO3 from friction surfaces with subsequent reduction of its lubricating efficiency.

About the Authors

V. S. Sergevnin
NUST «MISIS»
Russian Federation

Ph.D. Student, Department of functional nanosystems and high-temperature materials (FNS&HTM), 

119049, Moscow, Leninskiy prospect, 4



I. V. Blinkov
NUST «MISIS»
Russian Federation
Dr. Sci. (Eng.), Prof., Department FNS&HTM


D. S. Belov
NUST «MISIS»
Russian Federation
Ph.D. Student, Department FNS&HTM


A. O. Volkhonskii
NUST «MISIS»
Russian Federation
Ph.D., Assistant, Department FNS&HTM


Yu. A. Krupin
NUST «MISIS»
Russian Federation
Student, Department FNS&HTM


A. V. Chernogor
NUST «MISIS»
Russian Federation
Ph.D., Assistant Professor, Department of metal science and physics of strength


References

1. Ichimura H., Rodrigo A. The correlation of scratch adhesion with composite hardness for TiN coatings. Surf. Coat. Technol. 2000. Vol. 126. P. 152—158.

2. Akira Azushima, Yasuo Tanno, Hiroyuki Iwata, Kohshiro Aoki. Coefficients of friction of TiN coatings with preferred grain orientations under dry condition. Wear. 2008. Vol. 265. No. 7-8. P. 1017—1022.

3. Tanno Y., Azushima A. Effect of counter materials on coefficients of friction of TiN coatings with preferred grain orientations. Wear. 2009. Vol. 266. No. 11-12. P. 1178—1184.

4. Ramalho A., Celis J.-P. High temperature fretting behaviour of plasma vapour deposition TiN coatings. Surf. Coat. Technol. 2002. Vol. 155. P. 169—175.

5. Jianxin D., Aihua L. Dry sliding wear behavior of PVD TiN, Ti55Al45N, and Ti35Al65N coatings at temperatures up to 600 °C. Int. J. Refract. Met. Hard Mater. 2013. Vol. 41. P. 241—249.

6. Fateh N., Fontalvo G.A., Gassner G., Mitterer C. Influence of high-temperature oxide formation on the tribological behavior of TiN and VN coatings. Wear. 2007. Vol. 262. No. 9-10. P. 1152—1158.

7. Badisch E., Fontalvo G.A., Stoiber M., Mitterer C. Tribological behavior of PACVD TiN coatings in the temperature range up to 500 °C. Surf. Coat. Technol. 2003. Vol. 163—164. P. 585—590.

8. Franz R., Mitterer C. Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review. Surf. Coat. Technol. 2013. Vol. 228. P. 1—13.

9. Lugscheider E., Knotek O., Bobzin K., Bärwulf S. Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications. Surf. Coat. Technol. 2000. Vol. 133-134. P. 362—368.

10. Solak N., Ustel F., Urgen M., Aydin S., Cakir A.F. Oxidation behavior of molybdenum nitride coatings. Surf. Coat. Technol. 2003. Vol. 174-175. P. 713—719.

11. Gassner G., Mayrhofer P.H., Kutschej K., Mitterer C., Kathrein M. Magnéli phase formation of PVD Mo—N and W—N coatings. Surf. Coat. Technol. 2006. Vol. 201. P. 3335—3341.

12. Yang Q., Zhao L.R., Patnaik P.C., Zeng X.T. Wear resistant TiMoN coatings deposited by magnetron. Wear. 2006. Vol. 261. No. 2. P. 119—125.

13. Tian B., Yue W, Fu Zh., Gu Y., Wang Ch., Liu J. Surface properties of Mo-implanted PVD TiN coatings using MEVVA source. Appl. Surf. Sci. 2013. Vol. 280. P. 482— 488.

14. Deng B., Tao Y., Wang Y., Liu P. Study of the microstructure and tribological properties of Mo+C-implanted TiN coatings on cemented carbide substrates. Surf. Coat. Technol. 2013. Vol. 228. P. 597—600.

15. Andrievskii R.A. Nanomaterialy: kontseptsiya i sovremennye problem [Nanomaterials: concept and contemporary issues]. Ros. khim. zhurnal. 2002. Vol. 19. No. 5. P. 50—56.

16. Gutkin M.Yu., Ovid’ko I.A. Fizicheskaya mekhanika deformiruemykh nanostruktur. T. 1. Nanokristallicheskie materially [Physical mechanics of deformed nanostructures. Vol. 1. Nanocrystalline materials ]. SPb.: Yanus, 2003.

17. Nordin M., Larsson M., Hogmark S. Mechanical and tribological properties of multilayered PVD TiN/CrN. Wear. 1999. Vol. 232. No. 2. P. 221—225.

18. Avila R.F., Mancosu R.D. Comparative analysis of wear on PVD TiN and (Ti1–xAlx)N coatings in machining process. Wear. 2013. Vol. 302. No. 1-2. P. 1192—1200.

19. Zhou Y., Asaki R., Soe W-H., Yamamoto R., Chen R., Iwabuchi A. Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers. Wear. 1999. Vol. 236. No. 1-2. P. 159—164.

20. Golovin Yu.I. Vvedenie v nanotekhniku [Introduction to nanotechnics]. Mosсow: Mashinostroenie, 2007.

21. ISO/FDIS14577-1:2002 Metallic materials — Instrumented indentation test for hardness and materials parameters.

22. GOST 6130-71. Metally. Metody opredeleniya zharostoikosti [Metals. Heat resistance determination methods]. Moscow: Izdatel'stvo standartov, 1971.

23. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior. Wear. 2000. Vol. 246. No. 1-2. P. 1—11.

24. Tsui T.Y., Pharr G.M., Oliver W.C., Bhatia C.S., White R.L., Anders S., Anders A., Brown I.G. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Mater. Res. Soc. Symp. Proc. 1995. Vol. 383. P. 447—452.

25. Anikin V.N., Blinkov I.V., Volkhonskii A.O., Sobolev N.A., Tsareva S.G., Kratokhvil R.V, Frolov A.E. Ion-plasma Ti—Al—N coatings on a cutting hard-alloy tool operating under conditions of constant and alternating-sign loads. Russ. J. Non-Ferr. Met. 2009 Vol. 50. No. 4. P. 424—431.

26. Nefedov V.I. Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii [X-Rays spectroscopy of chemical compounds]. Moscow: Khimiya, 1984.

27. Sanjines R., Wiemer C., Almeida J., Levy F. Valence band photoemission study of the Ti—Mo—N system. Thin Solid Films. 1996. Vol. 290-291. P. 334—338.


Review

For citations:


Sergevnin V.S., Blinkov I.V., Belov D.S., Volkhonskii A.O., Krupin Yu.A., Chernogor A.V. Hardness, adhesion strength and tribological properties of adaptive nanostructured plasma-ion vacuum-arc coatings (Ti, Al)N–Mo2N. Izvestiya. Non-Ferrous Metallurgy. 2016;(4):67-75. (In Russ.) https://doi.org/10.17073/0021-3438-2016-4-67-75

Views: 1001


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)