Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Mathematical modeling of the drawing process for bars made of titanium sponge taking into account cavitation

https://doi.org/10.17073/0021-3438-2016-4-47-57

Abstract

The ABAQUS engineering analysis package was used for mathematical modeling of the drawing process for a billet obtained by compressing titanium sponge taking into account potential cavitation during forming. It was shown that for a low drawing ratio the maximum porosity is formed equally both due to changes in existing pores and appearance of new defects whereas when the drawing ratio increases, it is caused mainly by the growth of newly formed discontinuities with the area of origin corresponding to the area of tensile stress. For the larger drawing ratio and cone angle, the volume fraction of newly formed defects significantly affects the overall porosity. This increases the damage and may lead to bar breakage.

About the Authors

I. M. Berezin
Institute of Engineering Science, Ural Branch, Russian Academy of Science
Russian Federation

PhD, Researcher, Laboratory of system simulation,

620049, Ekaterinburg, Komsomol’skaya str. 34



A. P. Polyakov
Institute of Engineering Science, Ural Branch, Russian Academy of Science
Russian Federation
Dr. Sci. (Eng.), Lead Researcher of the Laboratory of system simulation


References

1. Hartman A.D., Gerdeman S.J., Hansen J.S. Producing lower-cost titanium for automotive applications. JOM. 1998. Vol. 50. Iss. 9. Р. 16—19.

2. Zalazinskii A.G. Plasticheskoe deformirovanie strukturno-neodnorodnykh materialov [Plastic deformation of structurally nonuniform materials]. Yekaterinburg: UrO RAN, 2000.

3. Borosovskaya E.M., Verbilo D.G., Pisarenko V.A., Podrezov Yu.N., Nazarenko V.A., Evich Ya.I., Kopylov V.I. Osobennosti strukturoobrazovaniya i mekhanicheskie svoistva deformirovannogo titana [Features of structurization and mechanical properties of the deformed titanium]. Fizika i technika vysokikh davlenii. 2007. Vol. 17. No. 2. P. 110—118.

4. Kolikov A.P., Krupin A.V., Polukhin P.I., Potapov I.N., Bondarev M.A., Izotov V.M. Technologiya i oborudovanie dlya obrabotki tugoplavkich, poroshkovich i kompozitsionnich materialov [Technology and equipment for processing of high-melting, powder and composite materials]. Moscow: Metallurgiya, 1989.

5. Kazeminezhad M. A study on the computation of the redundant deformation factor in wire drawing of austenitic 304 stainless steel. J. Mater. Proc. Technol. 2008. Vol. 199. No. 1. P. 230—233.

6. Komori K. Effect of ductile fracture criteria on chevron crack formation and evolution in drawing. Int. J. Mech. Sci. 2003. Vol. 45. P. 141—160.

7. Milenin A., Muskalski Z., Kustra P. The multi-scale FEM simulation of wire fracture during drawing of perlitic steel. Mater. Sci. Forum. 2008. Vol. 575-578. P. 1433—1438.

8. Zompí Antonio, Levi Raffaello. Advances in wire drawing process by theoretical and numerical analysis. In: Mater. Conf. IPMM 2007. Salerno, 28—30.06.2007.

9. Loginov Yu.N. Vliyanie ugla rabochei zony voloki na napryazhennoe sostoyanie v ochage deformacii pri volochenii medi [Influence of the angle of functional area on the stress state in the deformation zone at copper drawing]. Tsvet. metally. 2010. No. 3. P. 94—97.

10. Camacho A.M., González C., Rubio E.M., Sebastián M.A. Influence of geometrical conditions on central burst appearance in axisymmetrical drawing processes. J. Mater. Process. Technol. 2006. Vol. 177. P. 304—306.

11. McAllen P. J., Phelan P. Numerical analysis of axisymmetric wire drawing by means of a coupled damage model. J. Mater. Process. Technol. 2007. Vol. 183 P. 210—218.

12. Loginov Yu.N., Yeremeyevа K.V. Formoizmenenie odinochno raspolozhennoi pory v krugloi zagotovke pri volochenii [Formchanging of solitary located pore in round preform while drawing]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2009. No. 4. P. 3—8.

13. Gurson A.L. Continuum theory of ductile rupture by void nucleation and growth: Pt. I. Yield criteria and flow rules for porous ductile materials. J. Eng. Mater. Technol. 1977. Vol. 99. P. 2—15.

14. Tvergaard V. Influence of voids on shear band instabilities under plane strain condition. Int. J. Fract. Mech. 1981. Vol. 17. P. 389—407.

15. Chu C.C., Needleman A. Void nucleation effects in biaxial stretched sheets. J. Eng. Mater. Technol. 1980. Vol. 102. P. 249—256.

16. Severdenko V.P., Zhilkin V.Z. Osnovy teorii i technologii volocheniya provoloki iz titanovikh splavov [Bases of the theory and technology of drawing of a wire from titanic alloys]. Minsk: Nauka i technika. 1970.

17. Andrievskii R.A. Poroshkovoe materialovedenie [Powder materials science]. Moscow: Mashinostroenie, 1991.

18. ABAQUS. Hibbitt, Karlsson and Sorensen. Pawtucket, USA. 2002.

19. Avitzur. B. Analysis of central bursting defects in extrusion and wire drawing. Trans. ASME J. Eng. Industr. 1968. Vol. 90 No. 1. P. 79—91.

20. Yoshida K. Cold drawing of magnesium alloy wire and fabrication of microscrews. J. Steel Related Mater. 2004. Vol. 1. No. 2. P. 199—202.


Review

For citations:


Berezin I.M., Polyakov A.P. Mathematical modeling of the drawing process for bars made of titanium sponge taking into account cavitation. Izvestiya. Non-Ferrous Metallurgy. 2016;(4):47-57. (In Russ.) https://doi.org/10.17073/0021-3438-2016-4-47-57

Views: 662


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)