Temperature modes and critical velocities during wire drawing
https://doi.org/10.17073/0021-3438-2016-3-34-39
Abstract
Rod and wire product manufacturing is usually accompanied by residual stresses. The reason for this is both plastic deformation and potential thermoplastic deformation that occurs due to the contact frictional heating of metal surfaces. Undesirable residual stresses in the surface layers affect the accuracy and increase the probability of hardware destruction that can be observed in drawing product manufacturing. The authors of the article propose a method of determining the contact heating conditions based on the criteria of residual stress prevention. Temperature conditions causing thermoplastic deformations are determined according to thermoelasticity equations. Critical values are calculated for the temperature difference between the center and the surface of the stretched wire, at which the latter transits to a plastic state followed by residual stress formation. The limiting drawing velocities for a number of nonferrous metals (copper, zirconium, titanium) are defined. The excess of those top velocities will lead to undesirable residual stresses in the stretched product. It is proposed as a recommendation to increase the critical speed by creating hydrodynamic (fluid) friction conditions in metal products manufacturing.
About the Authors
G. L. KolmogorovRussian Federation
Dr. Sci. (Tech.), prof., Department of dynamics and strength of machines, PNRPU
N. A. Kosheleva
Russian Federation
postgraduate student, Department of dynamics and strength of machines, PNRPU.
References
1. Hernan A., Rojasa G., Calveta J.V., Bubnovichb V.I. A new analytical solution for prediction of forward tension in the drawing process. J. Mater. Process. Technol. 2008. Vol. 198. Iss. 1—3. P. 93—98.
2. Crina A., Monica I. Determination of residual stresses distribution within the formed part. Fascicle Manag. Technol. Eng. 2008. Vol. VII (XVII). P. 54—58.
3. Wistreich J.G. The fundamentals of wire drawing. Metall. Rev. 1958. Vol. 3. Iss. 10. P. 97—142.
4. Kovrev G.S., Zabryanskii B.A., Popov A.P. Issledovanie ostatochnykh uprugikh napryazhenii v provoloke iz trudnodeformiruemykh splavov [Investigation of residual elastic stresses in the wire made of hard-alloy]. Vestnik Moskovskogo gosudarstvennogo otkrytogo universiteta. Seriya: Tekhnika i tekhnologiya. 2011. No. 4. P. 5—13.
5. Kolmogorov G.L. Gidrodinamicheskaya smazka pri obrabotke metallov davleniem [Hydrodynamic lubrication for metal forming]. Mosсow: Metallurgiya, 1986.
6. Kolmogorov V.L., Orlov S.I., Selishchev K.P. Volochenie v rezhime zhidkostnogo treniya [Drawing in the mode of liquid friction]. Mosсow: Metallurgiya, 1967.
7. Ulutan D., Erdem Alaca B., Lazoglu I. Analytical modelling of residual stresses in machining. J. Mater. Process. Technol. 2007. Vol. 183. P. 77—87.
8. Timoshenko S.P., Goodyear J. Teoriya uprugosti [Theory of elasticity]. Mosсow: Nauka, 1975.
9. Kachanov L.M. Fundamentals of the theory of plasticity. N.Y.: Courier Dover Publ., 2004.
10. Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti [Applied theory of plasticity and creep]. Mosсow: Mashinostroenie, 1975.
11. Avitzur B. Metal forming: processes and analysis. N.Y.: McGraw-Hill Book Co., 1968.
12. Tret’yakov A.V., Zyuzin V.I. Mekhanicheskie svoistva metallov i splavov pri obrabotke davleniem [The mechanical properties of metals and alloys under pressure treatment]. Mosсow: Metallurgiya, 1973.
13. Kolmogorov G.L., Trofimov V.N., Shtutsa M.G., Chernova T.V. Mekhanika plasticheskogo deformirovaniya transversal’no-izotropnykh kompozitsionnykh sverkhprovodnikovykh materialov [Mechanics of transversely-isotropic plastic deformation of composite superconductor]. Perm: PNRPU, 2011.
14. Vega G., Haddi A., Imad A. Temperature effects on wire-drawing process: experimental investigation. Int. J. Mater. Form. 2009. Vol. 2 Suppl. 1. P. 229—232.
15. Marciniak Z., Duncan J.L., Hu S.J. Mechanics of sheet metal forming. 2-nd ed. Oxford: Butterworth-Heinemann, 2002.
Review
For citations:
Kolmogorov G.L., Kosheleva N.A. Temperature modes and critical velocities during wire drawing. Izvestiya. Non-Ferrous Metallurgy. 2016;(3):34-39. (In Russ.) https://doi.org/10.17073/0021-3438-2016-3-34-39