Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Kinetics of the air bubble mineralization considering separation of particles and time of aggregate emerging

https://doi.org/10.17073/0021-3438-2016-3-4-11

Abstract

The joint review of particle capturing, aggregate separation and emerging subprocesses in the conditions of periodic froth free flotation showed that mineral load formed on a separate bubble during its ascent (τm). This load is part of the equilibrium mineral load that can be reached in an endless mineralization time. It was proposed to characterize the composition of mineral load and speed of its achievement with two dimensionless parameters, which depend on the intensities of the subprocesses. The type of the particle parameter (B) was uniquely determined by the ratio of separation intensity and capture intensity, and the dimensionless time D – by correlation of particle capture and separation speeds to the air bubble rise velocity. The kinetics equation of mineralization with many bubbles was formulated in the exponential form similar to the first order equation (Beloglazov’s equation). In the mineralization rate constant (Km), capture and separation subprocess intensities determine the value of individual bubble extraction (εbm) in time τm, and the air consumption defines the total removal value ε. 

About the Author

V. D. Samygin
National University of Science and Technology «MISIS», 119049, Russia, Moscow, Leninski pr., 4.
Russian Federation

Dr. Sci. (Tech.), leading expert, Department of enrichment and processing of minerals and technogenic raw materials, National University of Science and Technology «MISIS»



References

1. Zheng X., Johnson N.W., Franzidis J.P. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner. Eng. 2006. Vol. 19. No. 11. P. 1191—1203.

2. Yianatos J., Contreras F., Diaz F., Villanueva A. Direct measurement of entrainment in large flotation cells. Powder Technol. 2009. Vol. 189. Iss. 1. P. 42—47.

3. Dobby G.S., Finch J.A. Particle size dependence in flotation derived from a fundamental model of the capture process. Int. J. Miner. Process. 1987. Vol. 21. P. 241—253.

4. Dai Z., Fornasiero D., Ralston J. 2000. Particle—bubble collision models: A review. Adv. Colloid Interface Sci. 2000. Vol. 85. P. 231—256.

5. Yianatos J., Bucarey R., Larenas J., Henriquez F., Torres L. Collection zone kinetic model for industrial flotation columns. Miner. Eng. 2005. Vol. 18. P. 1373—1377.

6. Duan J., Fornasiero D., Ralston J. Calculation of the flotation rate constant of chalcopyrite particles in an ore. Int. J. Miner. Process. 2003. Vol. 72. P. 227—237.

7. Samygin V.D., Filippov L.O., Shekhirev D.V. Osnovy obo- gashcheniya rud [Basis of ore concentration]. Moscow: Al’teks, 2003.

8. Bogdanov O.S., Maximov I.I., Podnek A.K., Yanis N.A. Teoriya i tekhnologia flotatsii rud [Theory and technology of ores flotation]. Moscow: Nedra, 1990.

9. Tikhonov O.N. Teoriya razdeleniya mineralov [Mine- ral separation theory]. St. Peterburg: SPSMU (TU), 2008.

10. Mika T., Fuerstenau D. Mikroskopicheskaya model’ flotatsionnogo protsessa. In: VIII Mezhdunarodnyi cong- ress po obogashcheniyu poleznykh iskopaemykh [A mic- roscopic model of the flotation process. In: VIII Mine- ral Processing Congr.] (Leningrad, May 1968). Vol. 2. P. 246—269.

11. Rubinshtein J.B., Sаmygin V.D. Effect of particle and bubb- le size on flotation kinetics. Frothing in flotation. London, N.Y.: Gordon and breath: Publ. House, 1998. Vol. 2. P. 51—80.

12. Saleh A.M. A study on the performance of second or- der models and two phase models in iron ore flota- tion. Physicochem. Probl. Miner. Process. 2010. Vol. 44. P. 215—230.

13. Shekhirev D.V., Filipov L.O., Sаmygin V.D. Mathematical modelling of the process of separation of the raw materials in the column flotation. In: Proc. XVIII Intern. Mineral Processing Congr. (Sydney, Australia, 23—28 May 1993). P. 1357—1362.

14. Abramov A.A., Djun Ngok Dang, Ivanov V.A. O veroyatnostnoi kontseptsii protsessa flotatsii [About the pro- babilistic concept of the flotation process]. Izv. vuzov. Gornyi zhurnal. 1978. No. 3. P. 153—158.

15. Koh P.T.L., Schwarz M.P. CFD modelling of bubble— particle collision rates and efficiencies in mineral flotation cells. Miner. Eng. 2003. Vol. 16. P. 1055—1059.

16. Koh P.T.L., Schwarz M.P. CFD model of a self-aerating flotation cell. Int. J. Miner. Process. 2007. Vol. 85. No. 3. P.16—24.

17. Koh P.T.L., Schwarz M.P. Modelling attachment rates of multi-sized bubbles with particles in a flotation cell. Miner. Eng. 2008. Vol. 21. P. 989—993.

18. Koh P.T.L., Smith L.K. The effect of stirring speed and induction time on flotation. Miner. Eng. 2011. Vol. 24. No. 5. P. 442—448.

19. Huang Z., Legendre D., Guiraud P. Effect of interfa- ce contamination on particle—bubble collision. Chem. Eng. Sci. 2012. Vol. 68 (1). P. 1—18. Doi: 10.1016/j. ces.2011.07.045.

20. Bocharov V.A., Ignatkina V.A ., Alekseichuk D.A. Influen- ce of mineral compositions and their modification on the selection flowchart and collectors of selective flota- tion of ores of nonferrous metals. Russ. J. Non-Ferr. Metals. 2012. Vol. 53. P. 279—288.

21. Samygin V.D., Grigoryev P.V. Modelirovanie vliyaniya gidrodinamicheskikh faktorov na selektivnost’ protsessa flotatsii. Pt. 1. Vliyanie diametra puzyr’ka i dissipatsii turbulentnoi energii [Modeling of the influence of the hydrodynamic factors on the flotation process. Pt. 1. In- fluence of the bubble diameter and turbulent energy dissipation]. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2015. No. 1. P. 1—8.

22. Arbiter N. Flotation rate and flotation efficiency. Miner. Eng. 1951. Vol. 190. No. 3. P. 791—796.

23. Yianatos J., Bucarey R., Larenas J. Henriquez F., Torres L. Collection zone kinetic model for industrial flotation columns. Miner. Eng. 2005. Vol. 18. P. 1373—1377.

24. Barskii L.A., Kozin V.Z. Sistemnyi analiz v obogashchenii poleznykh iskopaemykh [Sistematic analysis in the minerals enrichment]. Moscow: Nedra, 1978.


Review

For citations:


Samygin V.D. Kinetics of the air bubble mineralization considering separation of particles and time of aggregate emerging. Izvestiya. Non-Ferrous Metallurgy. 2016;(3):4-11. (In Russ.) https://doi.org/10.17073/0021-3438-2016-3-4-11

Views: 784


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)