Thermodynamic prediction of copper anode slime fusion
https://doi.org/10.17073/0021-3438-2016-2-12-17
Abstract
The Outotec’s Chemical Reaction and Equilibrium Software HSC Chemistry software was used to make balance calculations for multicomponent equilibrium compounds in a heterophase gas-liquid-solid system under oxidizing fusion of the decoppered anode slime with sulfur, selenium and tellurium dioxides entering the gas phase, while the compounds of lead, copper, antimony, iron, and aluminum are concentrated in silicate slag. The study findings are as follows: under optimal conditions for the oxidizing fusion of the mixture (100 kg) of the anode slime (O2 » 0,9 kg; SiO2 ³ 6 %; CaO ~ 3 %; t = 1200 °C), lead, antimony and arsenic almost completely pass into silicate slag, while copper and silver (over 91 %) pass into matte. Selenium is distributed between the gas phase (49,8 %), matte (24,1 %), and metal phase (26,1 %); while tellurium is distributed between the fumes (14,4 %), silicate slag (8,4 %), and matte (77,2 %).
About the Authors
S. A. KrajukhinRussian Federation
the Research center
Cand. Sci. (Eng.), Head
624091, Russia, Verkhnyaya Pyshma, Sverdlovsk region., pr. Uspensky, 1
G. I. Maltsev
Russian Federation
the Research center
Dr. Sci. (Eng.), Senior Researcher, Chief Specialist
K. L. Timofeev
Russian Federation
Cand. Sci. (Eng.), Chief Нydrometallurgist
S. S. Naboichenko
Russian Federation
Department of metallurgy of Heavy non-ferrous metals
Dr. Sci. (Eng.), Prof., Corresponding Member of the RAS, Нead
620002, Russia, Ekaterinburg, Mira str., 19
References
1. Сошникова Л.А., Купченко М.М. Переработка медеэлектролитных шламов. М.: Металлургия, 1978. Soshnikova L.A., Kupchenko M.M. Pererabotka medeelektrolitnykh shlamov [Treatment of copper electrolytic slimes]. Moscow: Metallurgiya, 1978.
2. Петров Г.В. Особенности окисления селенида серебра при сульфатизации // Компл. использ. минер. сырья. 1987. No. 11. С. 50—53. Petrov G.V. Osobennosti okisleniya selenida serebra pri sul’fatizatsii [Features oxidation of silver selenide at sulphatization]. Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 1987. No. 11. Р. 50—53.
3. Беленький А.М., Бодуэн А.Я., Петров Г.В. Влияние окислителей на жидкофазную сульфатизацию медеэлектролитных шламов // Бюл. Цветная металлургия. 2004. No. 9. С. 17—20. Belen’kii A.M., Boduen A.Ya., Petrov G.V. Vliyanie okislitelei na zhidkofaznuyu sul’fatizatsiyu medeelektrolitnykh shlamov [Effect of oxidants in the liquid phase sulphatization of copper electrolytic slimes]. Byul. Tsvet. metallurgiya. 2004. No. 9. P. 17—20.
4. Кубасов В.Л., Никольская Л.Л., Мироевский Г.П. Способ переработки медеэлектролитных шламов: Авт. св-во 1678906 (СССР). Заявл. 21.06.1989. Опубл. 23.09.1991. Бюл. No. 35. Kubasov V.L., Nikol’skaya L.L., Miroevskii G.P. Sposob pererabotki medeelektrolitnykh shlamov [Method for processing of copper electrolytic slimes]: Certificate of authorship 1678906 (SU). 1989.
5. Wood P. Intec’s dendritic copper process poised for commercialization // Metal Powder Report. 2001. Vol. 56. Iss. 3. P. 26—30.
6. Xie F., Cai T., Ma Y. Recovery of Cu and Fe from printed circuit board waste sludge by ultrasound: evaluation of industrial application // J. Cleaner Product. 2009. Vol. 17. Iss. 16. P. 1494—1498.
7. Amaral F.A.D., Santos V.S., Bernardes A.M. Metals recovery from galvanic sludge by sulfate roasting and thiosulfate leaching // Miner. Eng. 2014. Vol. 60. P. 1—7.
8. Chou J.-D., Lin C.-L., Wey M-Y. Effect of Cu species on leaching behavior of simulated copper sludge after thermal treatment: ESCA analysis // J. Hazard. Mater. 2010. Vol. 179. No. 1-3. P. 1106—1110.
9. Hsiung J.-S., Huang Y.-C., Li K.-C. Study on the influence of additives in an industrial calcium fluoride and waterworks sludge co-melting system // J. Environmental Management. 2007. Vol. 84. Iss. 4. P. 384—389.
10. Agrawal A., Sahu K.K. Problems, prospects and current trends of copper recycling in India: An overview // Resources, Conservation and Recycling. 2010. Vol. 54. No. 7. P. 401—416.
11. Zhang W., Cheng C.Y. Manganese metallurgy review. Pt. I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide // Hydrometallurgy. 2007. Vol. 89. No. 3-4. P. 137—159.
12. Torres C.M., Taboada M.E., Graber T.A. The effect of seawater based media on copper dissolution from lowgrade copper ore // Miner. Eng. 2015. Vol. 71. P. 139—145.
13. Puts G.J., Crouse P.L. The influence of inorganic materials on pyrolysis of polytetrafluoroethylene. Pt. 1: The sulfates and fluorides of Al, Zn, Cu, Ni, Co, Fe, and Mn // J. Fluorine Chem. 2014. Vol. 168. P. 260—267.
14. Sundman B., Lu X.-G., Ohtani H. The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software // Comput. Mater. Sci. 2015. Vol. 101. P. 127— 137.
15. Littlejohn P., Vaughan J. Selectivity of commercial and novel mixed functionality cation exchange resins in mildly acidic sulfate and mixed sulfate-chloride solution // Hydrometallurgy. 2012. Vol. 121-124. P. 90—99.
16. Мастюгин С.А., Волкова Н.А., Набойченко С.С., Ласточкина М.А. Шламы электролитического рафинирования меди и никеля. Екатеринбург: УрФУ, 2013. Mastyugin S.A., Volkova N.A., Naboichenko S.S., Lastochkina M.A. Shlamy elektroliticheskogo rafinirovaniya medi i nikelya [Slimes from electrolytic refining of copper and nickel]. Ekaterinburg: UrFU, 2013.
Review
For citations:
Krajukhin S.A., Maltsev G.I., Timofeev K.L., Naboichenko S.S. Thermodynamic prediction of copper anode slime fusion. Izvestiya. Non-Ferrous Metallurgy. 2016;(2):12-17. (In Russ.) https://doi.org/10.17073/0021-3438-2016-2-12-17