Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

SINTERED TIAL INTERMETALLIC ALLOY PRODUCTION. PART 2. STUDY OF MOLDING AND SINTERING PROCESSES

https://doi.org/10.17073/0021-3438-2016-1-50-62

Abstract

An integrated process for producing electrodes of TiAl-based powder alloy is proposed with the following stages: powder alloy production by hydride-calcium recovery, powder treatment in a carbide ball mill with Y2O3 added as a structure modifier, workpiece hydrostatic molding and sintering. Experimental samples were used to study molding and sintering processes and examine alloy microstructure at all stages of the processing chain. An electrode for plasma centrifugal disintegration of granules was produced using this technology.

About the Authors

A. A. Zaitsev
Scientific-educational centre SHS MISIS–ISMAN
Russian Federation

Cand. Sci. (Tech.), senior researcher,

119049, Moscow, Leninsky prospect, 4



Yu. Yul Kaplansky
Scientific-educational centre SHS MISIS–ISMAN
Russian Federation
laboratory assistant


J. A. Sentyurina
MISIS
Russian Federation

engineer of Scientific-educational centre SHS MISIS–ISMAN; 
postgraduate student of Department of powder metallurgy and functional coatings (PMFC) of MISIS



E. A. Levashov
MISIS
Russian Federation

Dr. Sci. (Tech.), prof., acad. of RANS, head of Department of PMFC of MISIS;
head of Scientific-educational centre SHS MISIS–ISMAN



A. V. Kasimtsev
LLC «Metsintez»; Tula State University
Russian Federation

Dr. Sci. (Tech.), head, 300041, Tula, Frunze str., 9;

prof., Department of physics of metals and metallography, 300012, Tula, Prospect Lenina, 92



Yu. S. Pogozhev
MISIS
Russian Federation
Cand. Sci. (Tech.), senior researcher of Scientific-educational centre SHS MISIS–ISMAN


S. N. Yudin
Tula State University
Russian Federation
engineer, postgraduate student of Department of physics of metals and metallography


T. A. Sviridova
MISIS
Russian Federation
Cand. Sci. (Phys.-Math.), research assistant of Centre of composite materials


A. V. Malyarov
LLC «Metsintez»
Russian Federation
engineer


References

1. Dovbysh V.M., Zabednov P.V., Zlenko M.A. Additivnye tekhnologii i izdeliya iz metalla [Additive technology and metal products]. Bibliotechka liteishchika. 2014. No. 9. P. 14—71.

2. Gibson I., Rosen D.W., Stucker B. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Science & Business Media. New York:

3. Springer, 2009. 3. CompMechLab® Hi-Tech News. URL: http://fea.ru/news/6109 (accessed: 29.10.2015).

4. Logacheva A.I., Sentyurina Zh.A., Logachev I.A. Additivnye technologii proizvodstva otvetstvennykh izdelii iz metallov i splavov (obzor) [Additive manufacturing technology of responsible products from metals and alloys (a review)]. Perspektivnye materialy. 2015. No. 4. P. 5—16.

5. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 2012. Vol. 57 (3). P. 133—164.

6. Song B., Dong S., Zhang B., Liao H., Coddet C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater. Design. 2012. Vol. 35. P. 120—125.

7. Song B., Dong S., Coddet P., Liao H., Coddet C. Fabrication and microstructure characterization of selective laser melted FeAl intermetallic parts. Surf. Coat. Technol. 2012. Vol. 206. P. 4704—4709.

8. Wang Z., Guana K., Gaoa M. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 2012. Vol. 513. P. 518—523.

9. Angelo P.C., Subramanian R. Powder metallurgy. Science, Technology and Applications. New Delhi: PHI Learning Pvt. Ltd, 2008.

10. Donachie M.J., Donachie S.J. Superalloys: A Technical guide. Cleaveland, OH: American Society for Metals, 2002.

11. Behúlová M., Mesárošová J., Grgač P. Analysis of the influence of the gas velocity, particle size and nucleation temperature on the thermal history and microstructure development in the tool steel during atomization. J. Alloys Compd. 2014. Vol. 615. P. 217—223.

12. Yolton C.F., Froes F.H. Titanium powder metallurgy. Science, Technology and Applications. Oxford: Elsevier, 2015.

13. Neikov O., Naboychenko S., Mourachova I., Gopienko V., Frishberg I., Lotsko D. Handbook of non-ferrous metal powders. Technologies and Applications. Oxford: Elsevier, 2009.

14. Ahsan M.N., Pinkerton A.J., Moat R.J., Shackleton J. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti—6Al—4V powders. Mater. Sci. Eng. 2011. Vol. 528. P. 7648—7657.

15. Ahsan M.N., Pinkerton A.J., Laiq A. A comparison of laser additive manufacturing using gas and plasma-atomized Ti—6Al—4V powders. Innovative Developments in Virtual and Physical Prototyping. London: Taylor & Francis Group, 2012.

16. Zhao X., Chen J., Lin X., Huang W. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater. Sci. Eng. A. 2008. Vol. 478. P. 119—124.

17. Qi H., Azer M., Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718. Metall. Mater. Trans. A. 2009. Vol. 40. P. 2410—2422.

18. Moskvichev Yu.L., Panin V.I., Ageev S.V. Granul’nye kompozity i effektivnost’ ikh primeneniya [Granules composites and effectiveness of their performance]. Actual Conference. 2011. No. 1 (70). P. 44—48.

19. Liu X., Gong K., Zhang Z., Tang L.Z. NiAl—Cr(Mo) biphase eutectic crystal intermetallic compound modified by Ta: Pat. 100497700 (CN). 2007.

20. Kasimtsev A.V., Yudin S.N., Sviridova T.A., Malyarov A.V., Zaitsev A.A, Sentyurina Zh.A., Kaplanskii Yu.Yu., Pogozhev Yu.S., Levashov E.A. Poluchenie spechennogo splava na osnove intermetallida TiAl. Chast’ 1. Gidridnokal’tsievaya tekhnologiya polucheniya i svoistva poroshkovogo splava Ti—47Al—2Nb—2Cr [Producing a sintered alloy based on intermetallic compounds TiAl. Part 1: Calcium-hydride technology of obtaining and properties of powder alloy Ti—47Al—2Nb—2Cr]. Izv. vuzov. Tsvet. metallurgiya. 2015. No. 4. P. 63—68.

21. Liu C.T., Schneibel J.H., Maziasz P.J., Wright J.L., Easton D.S. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics. 1996. Vol. 4. P. 429—440.

22. Appel F., Oehring M., Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics. 2000. No. 8. P. 1283—1312.

23. Clemens H., Wallgram W., Kremmer S., Güther V., Otto A., Bartels A. Design of Novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hotworkability. Adv. Eng. Mater. 2008. No. 10. P. 707—713.

24. Imaev V.M., Imaev R.M., Oleneva T.I. Sovremennoe sostoyanie issledovanii i perspektivy razvitiya tekhnologii intermetallidnykh γ-TiAl splavov [The current state of research and prospects for the development of technologies intermetallic γ-TiAl alloys]. Pis’ma o materialakh. 2011. Vol. 1. No. 1. P. 25—31.

25. Demenok A.O., Ganeev A.A. Fiziko-himicheskie metody vybora legiruуushhih elementov dlya sistemy Al—Ti [Physical and chemical methods of choice of the alloying elements for Al—Ti system]. Polzunovskij al’manah. 2011. No. 4. P. 10—13.


Review

For citations:


Zaitsev A.A., Kaplansky Yu.Yu., Sentyurina J.A., Levashov E.A., Kasimtsev A.V., Pogozhev Yu.S., Yudin S.N., Sviridova T.A., Malyarov A.V. SINTERED TIAL INTERMETALLIC ALLOY PRODUCTION. PART 2. STUDY OF MOLDING AND SINTERING PROCESSES. Izvestiya. Non-Ferrous Metallurgy. 2016;(1):50-62. (In Russ.) https://doi.org/10.17073/0021-3438-2016-1-50-62

Views: 797


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)