APPLICATION OF SHS PROCESSES FOR THE PRODUCTION OF IN SITU ALUMINUM MATRIX COMPOSITES DISCRETELY REINFORCED WITH NANOSIZED TITANIUM CARBIDE PARTICLES. REVIEW
https://doi.org/10.17073/0021-3438-2016-1-39-49
Abstract
About the Authors
A. P. AmosovRussian Federation
Dr. Sci. (Phys.-Math.), prof., head of Department of metals technology and aviation materials science, 443086, Samara, Moskovskoe shosse, 34;
head of Department of metals science, powder metallurgy, nanomaterials, 443100, Samara, Molodogvardeyskaya str., 244
A. R. Luts
Russian Federation
Cand. Sci. (Tech.), senior researcher of Department of metals technology and aviation materials science of SSAU;
associate prof. of Department of materials science and commodity expertise of SSTU
E. I. Latuhin
Russian Federation
Cand. Sci. (Tech.), senior researcher of Department of metals technology and aviation materials science of SSAU;
associate prof. of Department of metals science, powder metallurgy, nanomaterials of SSTU
A. A. Ermoshkin
Russian Federation
postgraduate of Department of metals science, powder metallurgy, nanomaterials of SSTU
References
1. Karl U. Kainer. Metal matrix composites. Weinheim: Verlag GmbH & Co. KGaA, 2006.
2. Adebisi A.A. Metal matrix composite brake rotor: historical development and product life cycle analysis. Int. J. Autom. Mech. Eng. 2011. Vol. 4. Р. 471—480.
3. Kurganova Yu.A., Fetisov G.P., Gavrilov G.N. Kompozitsionnye materialy v aviatsii i ikh prognozirovanie [Composite materials in aviation and their prediction]. Tekhnologiya metallov. 2015. No. 1. P. 22—25.
4. Panfilov A.V. Sovremennoe sostoyanie i perspektivy razvitiya litykh diskretno-armirovannykh alyumomatrichnykh kompozitsionnykh materilov [Current state and prospects of development of cast discrete reinforced aluminum matrix composite materials]. Liteishchik Rossii. 2008. No. 7. P. 23—28.
5. Singh H., Sarabjit, Jit N., Tyagi A.K. An overview of metal matrix composite: processing and SiC based mechanical properties. J. Eng. Res. Stud. 2011. Vol. 2. Р. 72—78.
6. Rana R.S., Purohit R., Das S. Review of recent studies in Al matrix composites. Int. J. Sci. Eng. Res. 2012. Vol. 3. No. 6. P. 1—16.
7. Kennedy A.R., Wyatt S.M. Characterising particle-matrix interfacial bonding in particulate Al—TiC MMCs produced by different methods. Composites. A. 2001. Vol. 32.
8. No. 3—4. P. 555—559.
9. Jerome S., Ravisankar B., Mahato P.K., Natarajan S. Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al—TiC composites. Tribol. Int. 2010. Vol. 43. No. 11. Р. 2029—2036.
10. Song I.H., Kim D.K., Hahn Y.D., Kim H.D. Synthesis of in-situ TiC—Al composite by dipping exothermic reaction process. Met. Mater. Int. 2004. Vol. 10. No. 3. P. 301—3-6.
11. Borgonovo C., Apelian D., Makhlouf M.M. Aluminum nanocomposites for elevated temperature applications. JOM. 2011. Vol. 63. No. 2. P. 57—64.
12. Tjong S.Ch. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 2007. Vol. 9. No. 8. Р. 639—652.
13. Camargo P.H.C., Satyanarayana K.G., Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mat. Res. 2009. Vol. 12. No. 1. Р. 1—39.
14. Krushenko G.G. Rol’ chastits nanoporoshkov pri formirovanii struktury alyuminievykh splavov [The role of nanopowder particles when forming structures of aluminum alloys]. Metallurgiya mashinostroeniya. 2011. No. 1. P. 20—24.
15. Casati R., Vedani M. Metal matrix composites reinforced by nano-particles: Review. Metals. 2014. No. 4. P. 65—83.
16. Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall—Petch effect. Mater. Sci. Eng. A. 2012. Vol. 531. No. 1. Р. 112—118.
17. Zhang Z., Chen D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A. 2008. Vol. 483. Р. 148—152.
18. Zhou D., Qiu F., Jiang Q. The nano-sized TiC particle reinforced Al—Cu matrix composite with superior tensile ductility. Mater. Sci. Eng. A. 2015. Vol. 622. P. 189—193.
19. Kurdyumov A.V., Pikunov M.V., Chursin V.M., Bibikov V.L. Proizvodstvo otlivok iz splavov tsvetnykh metallov [Production of castings from alloys of non-ferrous metals]. 2-nd. ed. Moscow: MISIS, 1996.
20. Vinod Kumar G.S., Murty B.S., Charaborty M. Development of Al—Ti—C grain refiners and study of their grain refining efficiency on Al and Al—7Si alloy. J. Alloys Compd. 2005. Vol. 396. No. 1—2. P. 143—150.
21. Mikheev R.S., Chernyshova T.A. Diskretno armirovannye kompozitsionnye materialy sistemy Al—TiC [Discretely reinforced composite materials of Al—TiC]. Zagotovitel’nye proizvodstva v mashinostroenii. 2008. No. 11. С. 44—53.
22. Krushenko G.G. Sredstva i tekhnologii uvelicheniya soderzhaniya nanoporoshkov v alyuminievykh modifitsiruyushchikh prutkakh [Means and technologies of increase of nanopowders content in the aluminium modifying rods]. Nanotekhnika. 2011. No. 3. P. 55—64.
23. Mazaheri Y., Meratian R., Emadi A., Najarian R. Comparison of microstructural and mechanical properties of Al—TiC, Al—B4C and Al—TiC—B4C. Mater. Sci. Eng. A. 2013. Vol. 560. P. 278—287.
24. Yang Y., Li X. Ultrasonic cavitation based nanomanufacturing of bulk aluminum matrix nanocomposites. J. Manufact. Sci. Eng. 2007. Vol. 129. Р. 497—501.
25. Kosnikov G.A., Baranov V.A., Petrovich S.Yu., Kalmykov A.V. Liteinye nanostrukturnye kompozitsionnye alyumomatrichnye splavy [Cast alumo-matrix nanostructured composite alloys]. Liteinoe proizvodstvo. 2012. No. 2. P. 4—9.
26. Lü L., Lai M.O., Yeo J.L. In situ synthesis of TiC composite for structural application. Composite Structures. 1999. Vol. 47. No. 1—4. P. 613—618.
27. Kim W.J., Hong S.I., Lee J.M., Kim S.H. Dispersion of TiC particles in an in situ aluminum matrix composite by shear plastic flow during high-ratio differential speed rolling. Mater. Sci. Eng. A. 2013. Vol. 559. No. 1. P. 325—332.
28. Kim S.-H., Cho Y.-H., Lee J.-M. Particle distribution and hot workability of in situ synthesized Al—TiCp composite. Metall. Mater. Trans. A. 2014. Vol. 45. No. 6. P. 2873—2884.
29. Liu Zh., Han Q., Li J. Ultrasound assisted in situ technique for the synthesis of particulate reinforced aluminum matrix composites. Composites. B: Eng. 2011. Vol. 42. No. 7. P. 2080—2084.
30. Rai R.N., Prasado Rao A.K., Dutta G.L., Chakraborty M. Forming behavior of Al—TiC in situ composites. Mater. Sci. Forum. 2013. Vol. 765. P. 418—422.
31. Katalog nanoporoshkov oksidov, karbidov, nitridov [Directory of nanopowders of oxides, carbides, nitrides]. URL: http://plasmotherm.ru/catalog/ (accessed: 18.07.2015).
32. Amosov A.P., Borovinskaya I.P., Merzhanov. A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology of self-propagating high-temperature synthesis of materials]. Moscow: Mashinostroenie-1, 2007.
33. Amosov A.P., Nikitin V.I., Nikitin K.V., Ryazanov S.A. Nauchno-tekhnicheskie osnovy primeneniya protsessov SHS dlya sozdaniya litykh alyumomatrichnykh kompozitsionnykh splavov, diskretno armirovannykh nanorazmernymi keramicheskimi chastitsami [Scientific and technical basis for the use of SHS processes for creating cast aluminum matrix composite alloys, reinforced with discrete ceramic nanoparticles]. Naukoemkie tekhnologii v mashinostroenii. 2013. No. 8. P. 3—10.
34. Amosov A.P., Titova Yu.V., Maydan D.A., Ermoshkin A.A., Timoshkin I.Yu. O primenenii nanoporoshkovoi produktsii azidnoi tekhnologii SHS dlya armirovaniya i modifitsirovaniya alyuminievykh splavov [On the application of nanopowder products of azide SHS technology for reinforcing and modifying of aluminum alloys]. Izv. vuzov. Tsvet. metallurgiya. 2015. No. 1. P. 68—74.
35. Nikitin V.I, Amosov A.P., Merzhanov A.G., Lukjanov G.S. Research and production of SHS master alloy for manufacture aluminum alloys. Int. J. SHS. 1995. Vol. 4. No. 1. P. 105—112.
36. Peijie Li, Kandalova E.G., Nikitin V.I., Luts A.R., Makarenko A.G., Yanfei Zh. Effect of fluxes on structure formation of SHS Al—Ti—B grain refiner. Mater. Lett. 2003. Vol. 57. No. 22—23. P. 3694—3698.
37. Peijie Li, Kandalova E.G., Nikitin V.I., Makarenko A.G., Luts A.R., Yanfei Zh. Preparation of Al—TiC composites by self-propagating high-temperature synthesis. Scr. Mater. 2003. Vol. 49. No. 7. P. 699—703.
38. Luts A.R., Makarenko A.G. Samorasprostranyayushchiisya vysokotemperaturnyi sintez alyuminievykh splavov [Self-propagating high-temperature synthesis of aluminium alloys]. Moscow: Mashinostroenie, 2008.
39. Amosov A.P., Borovinskaya I.P., Merzhanov A.G., Sytchev A.E. Principles and methods for regulation of dispersed structure of SHS powders: from monocrystallites to nanoparticles. Int. J. SHS. 2005. Vol. 14. No. 3. P. 165—186.
40. Luts A.R., Amosov A.P., Ermoshkin And.A., Ermoshkin Ant.A., Nikitin K.V., Timoshkin I.Yu. Self-propagating high-temperature synthesis of highly dispersed titanium-carbide phase from powder mixtures in the aluminum melt. Rus. J. Non-Ferrous Met. 2014. Vol. 55. P. 606—612.
41. Xiangha L., Zhenqing W., Zuogui Zh., Xiufang B. The relationship between microstructure and refining performance of Al—Ti—C master alloys. Mater. Sci. Eng. 2002. Vol. A332. No. 1. P. 70—74.
42. Amosov A.P., Luts A.R., Ermoshkin And.A., Ermoshkin Ant.A. Role of halide salts Na3AlF6 and Na2TiF6 in self-propagating high-temperature synthesis of Al—10%TiC nanocomposite alloy in aluminum melt. Life Sci. J. 2014. Vol. 11. No. 12s. P. 570—575.
43. Lekatou A., Karantzalis A.E., Evangelou A., Gousia V., Kaptay G., Gбcsi Z., Baumli P., Simon A. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behavior. Mater. Design. 2015. Vol. 65. P. 1121—1135.
44. Mayrhofer P.H., Mitterer C., Musil J. Structure—property relationships in single- and dual-phase nanocrystalline hard coatings. Surf. Coat. Technol. 2003. Vol. 174—175. P. 725—731.
Review
For citations:
Amosov A.P., Luts A.R., Latuhin E.I., Ermoshkin A.A. APPLICATION OF SHS PROCESSES FOR THE PRODUCTION OF IN SITU ALUMINUM MATRIX COMPOSITES DISCRETELY REINFORCED WITH NANOSIZED TITANIUM CARBIDE PARTICLES. REVIEW. Izvestiya. Non-Ferrous Metallurgy. 2016;(1):39-49. (In Russ.) https://doi.org/10.17073/0021-3438-2016-1-39-49