Fabrication of alloyed aluminum nickelides by metallothermy of metals oxides
https://doi.org/10.17073/0021-3438-2015-6-63-69
Abstract
Fabrication conditions of NiAl, NiAl–Cr and NiAl–Cr–Mo–W alloys by joint aluminothermic reduction of initial metal oxides are investigated. Thermodynamic characteristics of accompanying reactions are determined. The temperature dependence of the isobaric potential change (ΔG0, kJ/mol) of reduction reactions of oxides point to high formation probability of alloys. It is revealed by differential thermal analysis that the reduction of metal oxides enters the active phase after aluminum is melted at ~650 °C and progresses according to the heterogeneous mechanism in a temperature range of 800–1100 °C. The optimal composition of the initial charge, which provides the maximal yield of metals into alloys, is established. It is found experimentally that the yield of metals into alloys constitutes 85–92 wt.%. Synthesis products are identified by the elemental and X-ray phase analyses as intermetallic compounds of the Ni–Al system, which contain inclusions of chromium, molybdenum, and tungsten. It is shown that the concentration of inclusions varies in a range of 1,5–6,5 wt.%. The microhardness of alloys is determined to vary from 3546 to 7436 MPa depending on the content of alloying elements.
About the Authors
V. V. GostishchevRussian Federation
I. A. Astapov
Russian Federation
Cand. Sci., Scientific, Institute of Materials HNTS DVO RAN
A. V. Medneva
Russian Federation
Graduate Student, Department «Foundry and metal technology» of PNU
Ri Hosen
Russian Federation
Dr. Sci. (Eng.), Prof., Department «Foundry and metal technology» of PNU
S. N. Khimukhin
Russian Federation
Dr. Sci. (Eng.), Art. Scientific, Institute of Materials HNTS DVO RAN and PNU
References
1. Antsiferov V.N., BezdudnyiyF.F., Belyanchikov L.N., Betsofen S.Ya., Bondarenko G.G. Novye materially [Newmaterials]. Ed. Karabasov Yu.S. Moscow: MISIS, 2002.
2. Skachkov O.A., Dzneladze Zh.I. Novye poroshkovye materially dlya aviacionnokosmicheskoj tekhniki metallurgicheskogo oborudovaniya i ehnergeticheskogo mashinostroeniya [New powder materials for aerospace equipment, the metallurgical equipment and power mechanical engineering]. Metallurg. 2000. No. 3. P. 40—42.
3. Westbrook J.H., Fleischer R.L. Intermetallic Compounds. New York.: John Willey and Sons, 2002. Vol. 3.
4. Kolobov Y.U., Kablov E.N, Kozlov E.V. et al. Struktura i svojstva intermetallidnyh materialov s nanofaznym uprochneniem [Structure and properties of intermetallic materials with nanophase hardening]. Eds. Kablov E.N., Kolobov Y.U. Centr nanostrukturnyh materialov i nanotekhnologij BelGU. Moscow: MISIS, 2008.
5. Yamaguchi М., Inui H., Ito К. High-temperature structural intermetallics. Acta Mater. 2000. Vol. 48. No. 1. P. 307—322.
6. Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i TiAl: Mikrostruktura, deformacionnoe povedenie [Intermetalliсs Ni3Al and TiAl: Microstructure, deformation behavio]. Ekaterinburg: Institut fiziki metallov UrO RAN, 2002.
7. Povarova K.B. Fiziko-himicheskie principy sozdaniya termicheski stabilnyh splavov na osnove alyuminidov perekhodnyh metallov [The physical and chemical principles of creation of thermally stable alloys on the basis of alyuminid of transitional metals]. Materialovedenie. 2007. No. 12. P. 20—27.
8. Fatkulin O.H., Oficerov A.A. Modificirovanie zharoprochnyh nikelevyh splavov dispersnymi chasticami tugoplavkih soedinenij [Modifying of heat resisting nickel alloys disperse particles of refractory connections]. Litejnoe proizvodstvo. 1993. No. 4. P. 13—14.
9. Sauthoff G. Multiphase intermetallic alloys for structural applications. Intermetallics. 2000. Vol. 8. No. 9-11. P. 1101—1109.
10. Itin V.I., Najborodenko Yu.S. Vysokotemperaturnyj sintez intermetallicheskih soedinenij [High-temperature synthesis of intermetallic connections]. Tomsk: Tomskii gosudarstvennyi universitet, 1989.
11. Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Poroshkovayatekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology of the self-extending high-temperature synthesis of materials]. Moscow: Mashinostroenie, 2007.
12. Ovcharenko V.E., Lapshin O.V., Boyangin E.N., Ramazanov I.S., Chudinov V.A. Vysokotemperaturnyj sintez intermetallicheskogo soedineniya Ni3Al pod davleniem [Hightemperature synthesis of intermetallic connection of Ni3Al under pressure]. Izv. vuzov. Tsvet. metallurgiya. 2007. No. 4.P. 63—69.
13. Berdovsky Y.N. Intermetallics research progress. N.-Y.: Nova Science Publ. Inc., 2008.
14. Sokolov I.P., Ponomarev N.L. Vvedenie v metallotermiyu [Introduction to a metalthermie]. Moscow: Metallurgiya, 1990.
15. Ripan R., Chetyanu I. Neorganicheskaya himiya [Inorganic chemistry]. Moscow: Mir, 1971.
Review
For citations:
Gostishchev V.V., Astapov I.A., Medneva A.V., Hosen R., Khimukhin S.N. Fabrication of alloyed aluminum nickelides by metallothermy of metals oxides. Izvestiya. Non-Ferrous Metallurgy. 2015;(6):63-69. (In Russ.) https://doi.org/10.17073/0021-3438-2015-6-63-69