Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Fabrication of aluminum–ceramic skeleton composites based on the Ti2AlC MAX phase by SHS compaction

https://doi.org/10.17073/0021-3438-2015-6-53-62

Abstract

A one-stage manufacturing technology of aluminum-ceramic skeleton composites by combining the processes of self-propagating hightemperature synthesis (SHS) of a porous skeleton formed by the MAX phase of the Ti2AlC composition and its impregnation by the aluminum melt under the pressure (SHS compaction). A composition of the exothermic charge 2Ti + C + 22,5 wt % Al + 10 wt % TiH2, which provides the formation of a porous skeleton of the Ti2AlC phase without impurity phases by the SHS technology, is selected. It is shown that when impregnating the hot SHS skeleton with aluminum, new phases are formed such as the MAX phase (Ti3AlC2), titanium carbide (TiC), and titanium aluminide (Al3Ti). However, the content of the basic MAX phase remains high, and the ceramic component of the material consists of Ti2AlC by 76 %. When analyzing the microstructure, it is revealed that the composite has certain residual porosity after the impregnation and cooling. The influence of the impregnation pressure (q = 22, 28 and 35 MPa) on the distribution of the aluminum content over the height and radius of the diametral sample section is investigated experimentally. It is shown that the nonuniform Al distribution over the sample bulk is caused by the nonuniform pressure and temperature fields as well as different compactibility of hot inner and colder outer sample parts. The degree of compaction of characteristic zones is leveled as the impregnation pressure increases, and composition inhomogeneity over the sample bulk decreases. The difference of aluminum concentration over the sample bulk at q = 35 MPa does not exceed 5 %. By the hardness level (HB ≈ 150 kg/mm2), the SHS-compacted aluminum-ceramic skeleton composite based on the Ti2AlC MAX phase corresponds to high-strength Al–Zn–Mg–Cu aluminum alloys.

About the Authors

A. F. Fedotov
Самарский государственный технический университет (СамГТУ) Самарский государственный аэрокосмический университет им. акад. С.П. Королева (национальный исследовательский университет) (СГАУ)
Russian Federation

Dr. Sci. (Eng.)., Prof., Department of Mechanics, Samara State Technical University (SamSTU) (443086, Russia, Samara, Moskovskoye shosse, 34); Leading Researcher, Department of Metals Technology and Aeronautical Materials Science, Samara State Aerospace University (SSAU) (443100, Russia, Samara, Molodogvardeyskaya str., 244, Main building).



A. P. Amosov
Самарский государственный технический университет (СамГТУ)
Russian Federation

Dr. Sci. (Phys.-Math.), Prof., Head of Department of Metals Science, Powder Metallurgy, Nanomaterials SamSTU; Head of Department of Metals Technology and Aeronautical Materials Science, SSAU



E. I. Latukhin
Самарский государственный технический университет (СамГТУ)
Russian Federation

Cand. Sci. (Eng.), Associate Prof., Department of Metals Science, Powder Metallurgy, Nanomaterials, SamSTU; Senior Researcher, Department of Metals Technology and Aeronautical Materials Science, SSAU



V. A. Novikov
Самарский государственный технический университет (СамГТУ)
Russian Federation
Post-graduate Student, Department of Metals Science, Powder Metallurgy, Nanomaterials, SamSTU


References

1. Adebisi A.A., Maleque M.A., Rahman M.M. Metal matrix composite brake rotor: historical development and product life cycle analysis. Int. J. Autom. and Mech. Eng. 2011. Vol. 4. P. 471—480.

2. Binner J.,Chang H., Higginson R. Processing of ceramicmetal interpenetrating composites. J. Europ. Ceram. Soc. 2009. Vol. 29. P. 837—842.

3. Li J., Binner J., Higginson R. Dry sliding wear behavior of co-continuous ceramic foam/aluminum alloy interpenetrating composites produced by pressureless infiltration. Wear. 2012. Vol. 276. P. 94—104.

4. Wang H., Wang S., Liu G., Wang Y. AlSi11/Si3N4 interpenetrating composites. Tribology properties of aluminum matris composites. Advan. Mater. Phys. and Chem. 2012. Vol. 2. No. 4B. P. 130—133.

5. Peng H.X., Fan Z., Evans J.R.G. Bi-continuous metal matrix composites. Mater. Sci. Eng. A. 2001. Vol. 303. P. 37—45.

6. Lan J., Yan-li J., Liang Y., Nan S., You-dong D. Experimental study and numerical analysis on dry friction and wear performance of co-continuous SiC/Fe–40Cr against SiC/2618 Al alloy composites. Trans. Nonfer. Met. Soc. China. 2012. Vol. 22. P. 2913—2924.

7. Amosov A.P., Borovinskaya I.P., Merzhanov. A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder Technology of Self-propagating High-temperature Synthesis of Materials]. Moscow: Mashinostroenie-1, 2007.

8. Barsoum M. W. Thermodynamically stable nanolaminates. Progr. Solid State Chem. 2000. Vol. 28. P. 201—281.

9. Samsonov G.V., Borisova A.L., Zhidkova T.G. et al. Phisikokhimicheskie svoistva okislov: Spravochnik [Physical and chemical properties of oxides: reference book]. Moscow: Metallurgiya, 1978.

10. Samsonov G.V., Vinnitsky I.M. Tugoplavkie soedineniya: Spravochnik [Refractory compounds: Reference book]. Moscow: Metallurgiya, 1976.

11. Wang X.H., Zhou Y.C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J. Mater. Sci. Technol. 2010. Vol. 26. No. 5. P. 385—416.

12. Wang P., Mei B., Hong X., Zhou W. Synthesis of Ti2A1C by hot pressing and its mechanical and electrical properties. Trans. Nonfer. Met. Soc. China. 2007. Vol. 17. P. 1001—1004.

13. Ge Z., Chena K., Guo J., Zhou H., Ferreira J.M.F. Combustion synthesis of ternary carbide Ti3AlC2 in Ti—Al—C system. J. Eur. Ceram. Soc. 2003. Vol. 23. P. 567—574.

14. Levashov E.A., Pogozhev Yu.S., Shtansky D.V., Petrzhik M.I. Samorasprostranyayushchiysya vysokotemperaturny sintez keramicheskikh materialov na osnove Мn+1АХn phaz v sisteme Ti—Cr—Al—C [Self-propagating high-temperature synthesis of ceramics on the base of Мn+1АХn phases in the system of Ti—Cr—Al—C]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2008. No. 3. P. 34—46.

15. Stolin A.M., Vrel D., Galyshev S.N., Hendaoui A., Bazhin P.M., Sytschev A.E. Hot forging of MAX compounds SHS-pro-duced in the Ti—Al—C system. Int. J. SHS. 2009. Vol. 18. No. 3. P. 194—199.

16. Meng F., Liang B., Wang M. Investigation of formation mechanism of Ti3SiC2 by self-propagating high-temperature synthesis. Int. J. Refr. Met. and Hard Mater. 2013. Vol. 41. P. 152—161.

17. Thomas T., Bowen C.R. Thermodynamic predictions for the manufacture of Ti2AlC MAX-phase ceramic by combustion synthesis. J. Alloys and Comp. 2014. Vol. 602. P. 72—77.

18. Fedotov A.F., Amosov A.P., Latukhin E.I., Ermoshkin A.A., Davydov D.M. Vliyanie gazifitsiruyushchikh dobavok na phazovy sostav produktov goreniya pri samorasprostranyayushchemsya vysokotemperaturnom sinteze MAX-phaz v sisteme Ti–C–Al [The influence of gasifying additives on phase composition of combustion products at selfpropagating high-temperature synthesis of MAX-phases in Ti–C–Al system]. Izv. Samarskogo nauchnogo tsentra RAN. 2014. Vol. 16. No. 6. P. 50—55.

19. Spencer С.В. Fiber-Reinforced Ti3SiC2 and Ti2AlC MAX Phase Composites. In: A Thesis of Master of Science in Materials Science and Engineering. Drexel University, 2010.

20. Ermoshkin A.A. SVS-pressovanie mnogokomponentnykh katodov na osnove system Ti—C—Al i Ti—C—Al—Si dlya naneseniya vakuumno-dugovykh pokryty [SHS-compaction of multicomponent cathodes of the Ti—C—Al and Ti—C—Al—Si systems for vacuum-arc coatings]: Selfsummary of PhD thesis. Samara: SamSTU, 2012.

21. Promyshlennye alyuminievye splavy: Spravochnik [Industrial aluminum alloys: Reference book]. Eds. F.I. Kvasov, I.N. Fridlyander. Moscow: Metallurgiya, 1984.

22. Tuchinsky L.I. Kompositsionnye materialy, poluchaemye metodom propitki [Composites made by infiltration method]. Moscow: Metallurgiya, 1986.


Review

For citations:


Fedotov A.F., Amosov A.P., Latukhin E.I., Novikov V.A. Fabrication of aluminum–ceramic skeleton composites based on the Ti2AlC MAX phase by SHS compaction. Izvestiya. Non-Ferrous Metallurgy. 2015;(6):53-62. (In Russ.) https://doi.org/10.17073/0021-3438-2015-6-53-62

Views: 832


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)