Pressure leaching of copper arsenic-containing mattes with copper sulfate solutions
https://doi.org/10.17073/0021-3438-2015-6-4-9
Abstract
The topicality is shown to improve the processing technology of complex polymetallic raw material containing a considerable amount of toxic impurities of arsenic and lead. Results on pressure leaching the mattes acquired after reduction smelting the dusts of OAO Sredneural’skii Copper Smeltery (SUMZ) by solutions of copper sulfate are discussed. These mattes contain a considerable amount of lead and arsenic. According to the data of X-ray phase analysis of matte samples, phases of sulfides (PbS, PbS·As2S3, Cu2S, FeS, and (Zn,Fe)S) and arsenides (FeAs2, Cu3As, FeAs, and Cu0,85As0,15), as well as inclusions of metallic copper, are revealed in them. Optimal parameters of matte leaching by copper sulfate solutions are the temperature of 150–180 °C, acidity from 5 to 30 g/dm3, and copper concentration of 14–32 g/dm3. This process made it possible to extract 85 % As into the solution, while copper and lead remained in the cake in this case.
Keywords
About the Authors
K. A. KarimovRussian Federation
Post-graduate Student, Principal Engineer, Department «Metallurgy and heavy non-ferrous metals», Ural Federal University (UrFU) (620002, Russia, Ekaterinburg, Mira str., 19).
S. S. Naboichenko
Russian Federation
Corresponding Member of the RAS, Dr. Sci. (Eng.), Prof., Head of Department «Metallurgy and heavy non-ferrous metals», UrFU
V. I. Neustroev
Russian Federation
Cand. Sci. (Eng.), Associate Prof., Department «Metallurgy and heavy non-ferrous metals», UrFU
References
1. Makhov I.E., Mikhaylov S.V., Shishkina L.D. Povedenie myshyaka i surmy pri pirometallurgicheskom proizvodstve medi [Behavior of arsenic and antimony during the pyrometallurgical manufacturing of copper]. Moscow: Central Scientific and Research Institute of Economics and Information of Non-ferrous Metallurgy. 1991. Is. 2.
2. Naboichenko S.S., Mamyachenkov S.V., Karelov S.V. Mysh’yak v tsvetnoi metallurgii [Arsenic in non-ferrous metallurgy]. Ekaterinburg : UrO RAN, 2004.
3. Selivanov E.N., Skopov G.V., Gulyaeva R.I., Matveev A.V. Material Composition of the dust from the electrostatic precipitators of a vanyukov furnace at the middle ural copper smelter. Metallurgist. 2014. Vol. 58. P. 431—435.
4. Skopov G.V., Belyaev V.V., Matveev A.V. Separate processing of vanukov smelting electrofilter dusts and their withdrawal from circulation at sredneuralsky copper smelter. Tsvetnye Metally (Nonferrous metals). 2013. Is. 8. P. 55—59
5. Skopov G.V., Matveev A.V. Combined processing of polymetallic semifinished products of metallurgical production. Metallurgist. 2011. Vol. 55. P. 596—600.
6. Neustroev V.I., Karimov K.A., Naboychenko S.S., Matveev A.V., Skopov G.V. Autoclave leaching of mattes from smelting of intermediate metallurgical products. Tsvetnye Metally (Nonferrous metals). 2013. Is. 8. P. 75—78.
7. Gomez M.A., Becze L., Celikin M., Demopoulos G.P. The effect of copper on the precipitation of scorodite (FeAsO4·2H2O) under hydrothermal conditions: Evidence for a hydrated copper containing ferric arsenate sulfate—short lived intermediate. J. Colloid Int. Sci. 2011. Vol. 360. P. 508—518.
8. William P.E., Michael B.R., Gregory D.F. Investigation of unrecognized former secondary lead smelting sites: confirmation by historical sources and elemental ratios in soil. Environmental Pollution. 2002. Vol. 117. P. 273—279.
9. Semenov M.Ju., Sirkis A.L., Hudjakov I.F. Izuchenie gidrotermal’nogo vzaimodeistviya sul’fidov medi, nikelya i zheleza s rastvorom sul’fata medi [Study of the hydrothermal reaction of copper, nickel and iron sulfides with a copper sulfate solution]. Tsvetnye metally. 1984. No. 6. P. 15—17.
10. Ivanov B.S., Boduen A.Ya., Yagudina Yu.R., Cheremisina, O.V. Conditioning of low grade concentrates produced by autoclave oxidation leaching of copper-zinc ore. Non-ferrous Metals. 2015. Is. 1. P. 21—24.
11. Nabojchenko S.S. Shneerson Ja.M., Kalashnikova M.I., Chugaev L.V. Avtoklavnaja gidrometallurgija cvetnyh metallov [Autoclave hydrometallurgy of non-ferrous metals]. Ekaterinburg: UGTU—UPI, 2009. T. 2.
12. Khrennikov A.A., Lebed’ A.B., Naboichenko S.S. Regularities of interaction of zinc sulfide with the arsenate ion in sulfuric acid solutions. Russ. J. Non-Ferr. Metals. 2007. Vol. 48. P. 164—168.
13. Monhemius A.J., Swash P.M. Removal and stabilizing As from copper refining circuits by hydrothermal processing. JOM. 1999. Vol. 51. P. 30—33.
14. Piret N.L. The Removal and Safe Disposal of Arsenic in Copper Processing. JOM. 1999. Vol. 51(9). P. 16—17.
15. Gomez M.A., Becze L., Cutler J.N., Demopoulos G.P. On the hydrothermal reaction chemistry and characterization of ferric arsenate phases precipitated from Fe2(SO4)3— As2O5—H2SO4 solutions. Hydrometallurgy. 2011. Vol. 107. P. 74—90.
Review
For citations:
Karimov K.A., Naboichenko S.S., Neustroev V.I. Pressure leaching of copper arsenic-containing mattes with copper sulfate solutions. Izvestiya. Non-Ferrous Metallurgy. 2015;(6):4-9. (In Russ.) https://doi.org/10.17073/0021-3438-2015-6-4-9