Influence of the stressed state on the limiting plasticity of M00K copper rolled wire
https://doi.org/10.17073/0021-3438-2015-5-39-45
Abstract
A fracture locus of copper rolled wire depending on the stressed-state coefficient (k) and Lode–Nadai coefficient (μσ) is constructed. The region of using this fracture locus to calculate the damage is limited by values k < 1,4 and –1 < μσ < 0. To construct the fracture locus, we performed twisting tests of cylindrical samples and tension tests of cylindrical and plane samples in air and in a chamber with a controlled liquid pressure, which was varied from 49 to 375 MPa. The constructed fracture locus will be further used for the calculations of damage of copper rolled wire in drawing processes, by the results of which, recommendations for lowering the wire breakage during drawing will be elaborated.
About the Authors
D. I. VichuzhaninRussian Federation
S. E. Shikhov
Russian Federation
S. V. Smirnov
Russian Federation
R. V. Churbaev
Russian Federation
References
1. Perlin I.L. Teoriya volocheniya [Drawing theory]. Moscow: Metallurgiya, 1971.
2. Norasethasopon S., Yoshida K. Finite-element simulation of inclusion size effects on cooper shaped-wire drawing. Mater. Sci. Eng. A. 2006. Vol. 422. P. 252–258.
3. Pugacheva N.B. Struktura i svoistva deformiruemykh legirovannykh latunei [Structure and properties of the deformable alloyed brass]. Ekaterinburg: UrO RAN, 2012.
4. Bridgman P.W. Studies in large plastic flow and fracture. N.Y.: McGraw-Hill, 1952.
5. Gubkin S.I. Deformiruemost’ metallov [Deformability of metals]. Moscow: Metallurgizdat, 1953.
6. Smirnov-Alyaev G.A., Rozenberg V.M. Teoriya plasticheskikh deformatsii metallov [Theory of plastic deformation of metals]. Moscow, Leningrad: Mashgiz, 1956.
7. Kachanov L.M. O vremeni razrusheniya v usloviyakh polzuchesti [About the time of destruction under creep conditions]. Dokl. AN SSSR. Ser. OTN. 1958. No. 8. P. 67–75.
8. Rabotnov Yu.N. Voprosy prochnosti materialov i konstruktsii [Questions of strength of materials and structures]. Moscow: Izd-vo AN SSSR, 1959.
9. Yuanli B., Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plasticity. 2008. Vol. 24. P. 1071–1096.
10. Kolmogorov V.L. Napryazheniya, deformatsii, razrushenie [Stresses, strains, fracture]. Moscow: Metallurgiya, 1970.
11. Smirnov S.V. Accumulation and healing of damage during plastic metal forming: simulation and experiment. Key Eng. Mater. 2013. Vol. 528. P. 61–69.
12. Bogatov A.A., Mizhiritskii O.I., Smirnov S.V. Resurs plastichnosti metallov pri obrabotke davleniem [Resource of metals plasticity under metal forming]. Moscow: Metallurgiya, 1984.
13. Davidenkov N.N., Spiridonova N.I. Analysis of the state of stress in the neck of a tensile test spesimen. Proc. ASTM. 1946. Vol. 46. P. 1147–1158.
14. Walpole R.E., Myers R.H., Myers S.L. Probability and statistics for engineers and scientists. 6-th ed. New Jersey: Prentice Hall, 1998.
15. Churbaev R.V., Kolmogorov V.L., Taluts G.G., Burkin S.P Ustanovka slozhnogo nagruzheniya dlya issledovaniya materialov pri vysokikh reguliruemykh davleniyakh [Aggregate of complicated loading for research of materials under high controlled pressure]. Zavod. Lab. 1989. Vol. 55. No. 9. P. 98–99.
16. Smirnov S.V., Shveikin V.P. Plastichnost’ I deformiruemost’ uglerodistykh stalei pri obrabotke davleniem [Plasticity and deformobility of carbon steels under plastic forming]. Ekaterinburg: UrO RAN, 2009.
17. Hooke R., Jeeves T.A. Direct search solution of numerical and statistical problems. J. ACM. 1961. Vol. 8. P. 212–229.
Review
For citations:
Vichuzhanin D.I., Shikhov S.E., Smirnov S.V., Churbaev R.V. Influence of the stressed state on the limiting plasticity of M00K copper rolled wire. Izvestiya. Non-Ferrous Metallurgy. 2015;(5):39-45. (In Russ.) https://doi.org/10.17073/0021-3438-2015-5-39-45