Influence of plasma narrow-jet cutting parameters on the weld quality during laser welding of titanium alloys
https://doi.org/10.17073/0021-3438-2025-4-50-61
Abstract
The study investigates the structural and mechanical characteristics of permanent joints produced by laser welding of VT1-0/VT1-0 titanium alloys after cutting with a newly designed PMVR-5.3 narrow-jet plasma torch, which features a gas-dynamic stabilization (GDS) system with several design innovations. The improved GDS efficiency enhances cutting precision and surface quality, thereby increasing the radiation absorption coefficient, weld penetration, and overall laser-welding efficiency. Experimental results show that continuous-wave CO2 laser welding of VT1-0/VT1-0 plates forms a narrow weld with a structure corresponding to the as-cast state of the alloy and large equiaxed grains in the central part of the weld, which decrease in size toward the root compared with those in the surface region. Although gas shielding does not completely prevent the formation of fine micropores in the weld metal, their amount is insignificant; they do not form critical clusters within the microvolumes of the weld and have no adverse effect on the strength characteristics of the welded joint. The average microhardness of the weld metal was found to be higher than that of the base metal. According to tensile and microhardness testing, the weld metal demonstrates high strength, significantly exceeding that of the titanium alloy, and exhibits a ductile fracture morphology. Under cyclic loading, fracture occurred in the base metal rather than in the weld metal, with the fraction of the final rupture zones increasing as the maximum cyclic stress rose. The findings confirm the applicability of precision narrow-jet air-plasma cutting and continuous-wave CO2 laser welding technologies for producing VT1-0/VT1-0 welded joints with high efficiency and mechanical strength comparable to those of the base material.
Keywords
About the Authors
S. V. AnakhovRussian Federation
Sergey V. Anakhov – Dr. Sci. (Eng.), Associate Professor, Head of the Department of mathematical and natural sciences
11 Mashinostroiteley Str., Ekaterinburg 620012
B. N. Guzanov
Russian Federation
Boris N. Guzanov – Dr. Sci. (Eng.), Professor, Head of the Department of engineering and vocational training in mechanical engineering and metallurgy
11 Mashinostroiteley Str., Ekaterinburg 620012
N. S. Michurov
Russian Federation
Nikolay S. Michurov – Senior Lecturer, Department of fire safety in construction
22 Mira Str., Ekaterinburg 620062
References
1. Aleksandrov A.V., Lednov S.V., Davydkina E.A. State of the affairs in the titanium industry and development prospects. Tekhnologiya legkikh splavov. 2021;(2):76—81. (In Russ.). https://doi.org/10.24412/0321-4664-2021-2-76-81
2. Kishawy H.A., Hosseini A. Machining difficult-tocut materials. Chapter: Titanium and titanium alloys. Springer: Ser. Materials forming, machining and tribology, 2019. https://doi.org/10.1007/978-3-319-95966-5_3
3. Bubnov V.A., Knyazev A.N. Titanium and its alloys in mechanical engineering. Bulletin of Kurgan State University. 2016;(3):92—96. (In Russ.).
4. Pultsin N.M. Interaction of titanium with gases. Moscow: Metallurgiya, 1969. 213 p. (In Russ.).
5. Ilyin A.A. Mechanism and kinetics of phase and structural transformations in titanium alloys. Moscow: Nauka, 1994. 304 p. (In Russ.).
6. Germain L., Gey N., Humbert M., Vo P., Jahazi M., Bocher Ph. Texture heterogeneities induced by subtransus processing of near α titanium alloys. Acta Materialia. 2008;56(15):4298—4308.
7. Groche P., Wohletz S., Brenneis M., Pabst P., Resch F. Joining by forming — A review on joint mechanisms, applications and future trends. Journal of Materials Processing Technology. 2014;212(10):1972—1994.
8. Paton B.E., Shelyagin V.D., Akhonin S.V., Topolskii V.F., Khaskin V.Yu., Petrichenko I.K., Bernatskii A.V., Mishchenko R.N., Siora A.V. Laser welding of titanium alloys. Avtomaticheskaya svarka. 2009;(10):35—39. (In Russ.).
9. Sokolov M., Salminen A. Improving laser beam welding efficiency. Engineering. 2014;6(09):559—571. https://doi.org/10.4236/ENG.2014.69057
10. Akman E., Demir A., Canel T., Sınmazçelik T. Laser welding of Ti6Al4V titanium alloys. Journal of Materials Processing Technology. 2009;209(8):3705—3713. https://doi.org/10.1016/j.jmatprotec.2008.08.026
11. Zhang Y., Sun D., Gu X., Li H. A hybrid joint based on two kinds of bonding mechanisms for titanium. Materials Letters. 2016;15(185):152—155.
12. Riccardi G., Cantello M. Laser material interactions: Absorption coefficient in welding and surface treatment. CIRP Annals — Manufacturing Technology. 1994;1: 171—175. https://doi.org/10.1016/j.optlastec.2012.03.025
13. Sokolov M., Salminen A. Experimental investigation of the influence of edge morphology in high power fiber laser welding. Physics Procedia. 2012;39:33—42. https://doi.org/10.1016/j.phpro.2012.10.0115
14. Covelli L., Jovane F., De Lori L., Tagliaferri V. Laser welding of stainless steel: Influence of the edges morphology. CIRP Annals — Manufacturing Technology. 1988;37:545—548.
15. Sokolov M., Salminen A., Somonov V., Kaplan A.F. Laser welding of structural steels: Influence of the edge roughness level. Optics & Laser Technology. 2012;44(7):2064—2071.
16. Pykin Yu.A., Anakhov S.V., Matushkin A.V. Plasmatron: Patent 2754817 (RF). 2021. (In Russ.).
17. Anakhov S.V., Guzanov B.N., Matushkin A.V., Michurov N.S. On compliance with regulatory standards for cutting quality in the production of welded joints. Competency. 2024;(5):56—62. (In Russ.). https://doi.org/10.24412/1993-8780-2024-5-56-62
18. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties. Moscow: VILS– MATI, 2009. 520 р. (In Russ.).
19. Illarionov A.G., Popov A.A. Technological and operational properties of titanium alloys. Ekaterinburg: Ural University Press, 2014. 137 p. (In Russ.).
20. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fractodiagnostics of destruction of metal materials and structures. Moscow: MISIS, 2007. 264 p. (In Russ.).
21. Gnusov S.F., Klimenov V.A., Alkhimov Yu.V., Budnitsky A.D., Orishich A.M., Cherepanov A.N., Afonin Yu.V. Formation of the structure of titanium and corrosionresistant steel during laser welding. Welding International. 2012;(1):17—22.
22. Ivanov M.B., Kolobov Yu.R., Manokhin S.S., Golosov E.V. Investigation of the structural and phase state of medical titanium alloys by modern methods of analytical electron microscopy. Indusrial laboratory. Diagnostics of materials. 2012;78(1):43—54. (In Russ.).
23. Polkin I.S., Egorova Yu.B., Davydenko L.V. Alloying, phase composition and mechanical properties of titanium alloys. Tekhnologiya legkikh splavov. 2022;(2): 4—13. (In Russ.). https://doi.org/10.24412/0321-4664-2022-2-4-13
24. Alkhimov Yu.V., Gnyusov S.F., Kapranov B.I., Klimenov V.A., Orishich A.M. Investigation of laser-welded titanium and stainless steel specimens using digital radiography methods. Russian Journal of Nondestructive Testing. 2012;48(4):238—244. https://doi.org/10.1134/S106183091204002X
Review
For citations:
Anakhov S.V., Guzanov B.N., Michurov N.S. Influence of plasma narrow-jet cutting parameters on the weld quality during laser welding of titanium alloys. Izvestiya. Non-Ferrous Metallurgy. 2025;(4):50-61. https://doi.org/10.17073/0021-3438-2025-4-50-61
JATS XML




























