Finite element modeling and analysis of the technological feasibility of a new cladding scheme for aluminum-lithium alloy 1441 ingots
https://doi.org/10.17073/0021-3438-2025-4-37-49
Abstract
Using the QForm software package, a finite-element analysis was conducted to assess the technological feasibility of implementing a new cladding scheme for 360-mm-thick aluminum–lithium alloy 1441 ingots under the production conditions of PJSC “KUMP”. Instead of the traditional cladding scheme, in which the cladding plates are roll-bonded to the ingot over four passes with an absolute reduction of 6 mm per pass, the cladding plates are seated in pre-machined recesses milled into the top and bottom surfaces of the ingot and roll-bonded in a single pass with an absolute reduction of 24 mm. The analysis showed that the new cladding scheme prevents extrusion of the cladding plates from the ingot surface at high reductions, enabling the use of thinner plates (10 mm instead of the conventional 15 mm). The new approach also significantly reduces the total number of passes and inter-deformation pauses during rough rolling, thereby improving the thermal condition of the workpiece before finish rolling. A reduction of three passes and three pauses (10 s each) leads to an average temperature increase of approximately 23 °C. The deformation behavior of the base metal (alloy 1441) and the cladding layer (ACpl alloy) was analyzed. The mean accumulated strain in the ingot after rolling according to the new scheme was found to be twice as high as under the traditional scheme, while the deformation distribution within the cladding layer was more uniform. The obtained results can be used to enhance and optimize hot-rolling parameters for clad sheets and strips of aluminum– lithium alloy 1441 at PJSC “KUMP”.
Keywords
About the Authors
A. M. PesinRussian Federation
Aleksandr M. Pesin – Dr. Sci. (Eng.), Prof., Chief Researcher of the Laboratory of Mechanics of Gradient Nanomaterials n.a. A.P. Zhilyaev
38 Lenin Ave., Magnitogorsk, Chelyabinsk Region 455000
A. V. Razinkin
Russian Federation
Aleksandr V. Razinkin – Cand. Sci. (Eng.), Director of Production
5 Zavodskaya Str., Kamensk-Uralsky, Sverdlovsk Region 623405
V. A. Zamaraev
Russian Federation
Vladimir A. Zamaraev – Engineer
5 Zavodskaya Str., Kamensk-Uralsky, Sverdlovsk Region 623405
D. O. Pustovoitov
Russian Federation
Denis O. Pustovoitov – Cand. Sci. (Eng.), Associate Professor, Leading Researcher of the Laboratory of Mechanics of Gradient Nanomaterials n.a. A.P. Zhilyaev
38 Lenin Ave., Magnitogorsk, Chelyabinsk Region 455000
References
1. Betsofen S.Ya., Antipov V.V., Knyazev M.I. Al—Cu—Li and Al—Mg—Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review). Russian Metallurgy (Metally). 2016;2016:326—341. https://doi.org/10.1134/S0036029516040042
2. Rioja R.J., Liu J. The evolution of Al—Li base products for aerospace and space applications. Metallurgical and Materials Transactions A. 2012;43:3325—3337. https://doi.org/10.1007/s11661-012-1155-z
3. El-Aty A.A., Xu Y., Guo X., Zhang S.-H., Ma Y., Chen D. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al— Li alloys: A review. Journal of Advanced Research. 2018;10:49—67. https://doi.org/10.1016/j.jare.2017.12.004
4. Antipov V.V., Tkachenko E.A., Zaitsev D.V., Selivanov A.A., Ovsyannikov B.V. Influence of homogenization annealing modes on the structural-phase state and mechanical properties of ingots made of aluminumlithium alloy 1441. Trudy VIAM. 2019;3(75):44—52. (In Russ.). https://doi.org/10.18577/2307-6046-2019-0-3-44-52
5. Li H., Zou Z., Li J., Xu G., Zheng Z. Correlation between grain structures and tensile properties of Al—Li alloys. Transactions of Nonferrous Metals Society of China. 2023;33(12):3597—3611. https://doi.org/10.1016/S1003-6326(23)66357-5
6. Ovsyannikov B.V. New aluminum-lithium alloy of the Al—Cu—Mg—Li(Ag,Sc) system intended for the production of thin sheets and profiles. Non-Ferrous Metals. 2014;(11):90—94. (In Russ.).
7. Kokovin P.L., Maltseva T.V., Ovsyannikov B.V. Mastering the technology of casting large-sized flat ingots from a new generation aluminum-lithium alloy. Liteishchik Rossii. 2023;(1):21—24. (In Russ.).
8. Ovsyannikov B.V., Komarov S.B. Development of production of deformed semi-finished products from aluminum-lithium alloys at JSC “KUMZ”. Tekhnologiya legkikh splavov. 2014;(1):97—103. (In Russ.).
9. Hajjioui E.A., Bouchaala K., Faqir M., Essadiqi E. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications. Heliyon. 2023;9(3):e12565. https://doi.org/10.1016/j.heliyon.2022.e12565
10. Duan S.Y., Huang L.K., Yang S.H., Zhou Z., Song S.J., Yang X.B., Chen Y.Z., Li Y.J., Liu G., Liu F. Uncovering the origin of enhanced strengthening in Li-added Al—Cu—Mg alloys. Materials Science and Engineering: A. 2021;827:142079. https://doi.org/10.1016/j.msea.2021.142079
11. Rioja R.J., Liu J. The evolution of Al—Li base products for aerospace and space applications. Metallurgical and Materials Transactions A. 2012;43(9):3325—3337. https://doi.org/10.1007/s11661-012-1155-z
12. First-principles insights into solute partition among various nano-phases in Al—Cu—Li—Mg alloys. Transactions of Nonferrous Metals Society of China. 2024:34(6): 1734—1744. https://doi.org/10.1016/S1003-6326(24)66503-9
13. Kolobnev N.I., Khokhlatova L.B., Antipov V.V. Promising aluminum-lithium alloys for aircraft structures. Tekhnologiya legkikh splavov. 2007;(2):35—38. (In Russ.).
14. Pantelakis S.G., Chamos A.N., Setsika D. Tolerable corrosion damage on aircraft aluminum structures: Local cladding patterns. Theoretical and Applied Fracture Mechanics. 2012;58(1):55—64. https://doi.org/10.1016/j.tafmec.2012.02.008
15. Corrosion of aluminum and aluminum alloys. Ed. D.R. Davis. Transl. Yu.I. Kuznetsov, M.Z. Lokshin. Moscow: NP «APRAL», 2016. 333 p. (In Russ.).
16. Razinkin A.V., Maltseva T.V., Ovsyannikov B.V., Levina A.V. Typical defects in ingots and semi-finished products made of aluminum deformable alloys. Ekaterinburg: Uralskii rabochii, 2023. 144 p. (In Russ.).
17. Degtyarev A.V., Maltseva T.V., Glinskikh P.I., Yakovlev S.I. Technological features of production of clad sheets from hard aluminum alloys at JSC “KUMZ”. Tekhnologiya legkikh splavov. 2024;(2):40—46 (In Russ.). https://doi.org/10.24412/0321-4664-2024-2-40-46
18. Orlov V.К., Drozd V.G., Sarafanov М.А., Specific features of aluminum alloy plates rolling. Proizvodstvo prokata. 2016;(4):11—16. (In Russ.).
19. Yashin V.V., Beglov E.D., Aryshensky E.V., Latushkin I.A. Effect of cladding layer thickness on deformation distribution over ingot cross-section. In: IX International congress "Non-ferrous metals and minerals-2017" (Krasnoyarsk, 11–15 September 2017). Krasnoyarsk, 2017. P. 735–744. (In Russ.).
20. Torikai G., Yoshida Y., Asano M., Niikura A. Visualization of metal flow and adhering of aluminum alloy in threelayer clad rolling. Procedia Manufacturing. 2018;15: 144—151. https://doi.org/10.1016/j.promfg.2018.07.188
21. Puchkova L.M. Features of joint rolling of high layered strips of different-strength metals. Proizvodstvo prokata. 2014;(9):3—10. (In Russ.).
22. Khan H.A., Asim K., Akram F., Hameed A., Khan A., Mansoor B. Roll bonding processes: State-of-the-аrt and future perspectives. Metals. 2021;11(9):1344. https://doi.org/10.3390/met11091344
23. Zixuan L., Shahed R., Tao W., Han J., Shu X., Pater Z., Huang Q. Recent advances and trends in roll bonding process and bonding model: A review. Chinese Journal of Aeronautics. 2023;36(4):36—74. https://doi.org/10.1016/j.cja.2022.07.004
24. Kebriaei R., Vladimirov I.N., Reese S. Joining of the alloys AA1050 and AA5754 — Experimental characterization and multiscale modeling based on a cohesive zone element technique. Journal of Materials Processing Technology. 2014;214(10):2146—2155. https://doi.org/10.1016/j.jmatprotec.2014.03.014
25. Salikhyanov D.R. Investigation of the stress-strain state at the boundary between materials during rolling of a layered composite. Ferrous Metals. 2023;(9):34—39. (In Russ.). https://doi.org/10.17580/chm.2023.09.06
26. Koshmin A., Zinoviev A., Cherkasov S., Ali Alhaj A.M., Tsydenov K., Churyumov A. Finite element modeling and experimental verification of a new aluminum Al— 2%Cu—2%Mn alloy hot cladding by flat rolling. Metals. 2024;14(8):852. https://doi.org/10.3390/met14080852
27. Zinyagin A.G., Borisenko N.R., Muntin A.V., Kryuchkova M.O. Features of finite element modeling for hot rolling process of clad sheets and strips. CIS Iron and Steel Review. 2023;26(2):51—57. https://doi.org/10.17580/cisisr.2023.02.08
28. Vlasov A.V., Stebunov S.A., Evsyukov S.A., Biba N.V., Shitikov A.A. Finite element modeling of technological processes of forging and bulk stamping: a tutorial. Moscow: Publ. House of the Bauman MSTU, 2019. 384 p. (In Russ.).
Review
For citations:
Pesin A.M., Razinkin A.V., Zamaraev V.A., Pustovoitov D.O. Finite element modeling and analysis of the technological feasibility of a new cladding scheme for aluminum-lithium alloy 1441 ingots. Izvestiya. Non-Ferrous Metallurgy. 2025;(4):37-49. https://doi.org/10.17073/0021-3438-2025-4-37-49
JATS XML




























